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Abstract—The performance analytics domain in High Perfor-
mance Computing (HPC) uses tabular data to solve regression
problems, such as predicting the execution time. Existing Ma-
chine Learning (ML) techniques leverage the correlations among
features given tabular datasets, not leveraging the relationships
between samples directly. Moreover, since high-quality embed-
dings from raw features improve the fidelity of the downstream
predictive models, existing methods rely on extensive feature
engineering and pre-processing steps, costing time and manual
effort. To fill these two gaps, we propose a novel idea of trans-
forming tabular performance data into graphs to leverage the
advancement of Graph Neural Network-based (GNN) techniques
in capturing complex relationships between features and samples.
In contrast to other ML application domains, such as social
networks, the graph is not given; instead, we need to build
it. To address this gap, we propose graph-building methods
where nodes represent samples, and the edges are automatically
inferred iteratively based on the similarity between the features
in the samples. We evaluate the effectiveness of the generated
embeddings from GNNs based on how well they make even
a simple feed-forward neural network perform for regression
tasks compared to other state-of-the-art representation learning
techniques. Our evaluation demonstrates that even with up
to 25% random missing values for each dataset, our method
outperforms commonly used graph and Deep Neural Network
(DNN)-based approaches and achieves up to 61.67% & 78.56%
improvement in MSE loss over the DNN baseline respectively for
HPC dataset and Machine Learning Datasets.

Index Terms—Graph Neural Network, High Performance
Computing, Performance Analytics, Representation Learning

I. INTRODUCTION

Simulations leverage HPC systems to evaluate numerous

what-if scenarios of otherwise experimentally intractable phe-

nomena. HPC configurations (e.g., number of threads, nodes,

power cap, thread binding) significantly impact system utiliza-

tion and execution time [1]–[4]. Estimating how long an appli-

cation will run based on the configurations before submitting
the job is a critical problem in HPC since scheduling systems

use this estimation as a hard cut-off for aborting the application

and scheduling a new job [5], [6]. Once an application gets

evicted from an HPC system, the scheduler adds it at the back

of the job queue. At a time, thousands of jobs can be waiting

in the queue, meaning a user may need to wait for their job

to be scheduled again, delaying the overall turnaround time of

science. On the other hand, over-predicting the runtime causes

the system to be idle once the application finishes leaving

billion-dollar systems under-utilized. Hence, over and under
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Fig. 1: A sample performance dataset. It contains numerical

and categorical features in the first six columns and the target

value in the last (Runtime). Note that values colored in red

(NaN) are missing values. Streaming HPC performance mon-

itoring systems often miss recording feature values or cannot

measure the runtime until the application ends, resulting in

missing feature values and unlabeled samples.

predictions of the runtime is undesirable.

The performance analytics research area in HPC leverages

ML techniques to enable precise runtime prediction. Since the

success of downstream ML tasks depends on data represen-

tation [7], [8], in this paper, we investigate the problem of

extracting the most meaningful information from seemingly

unrelated user inputs (i.e., configurations and algorithms) to

preserve the correlations between input features and target

performance metrics (e.g., runtime). Most HPC performance

datasets are organized in tabular format. Figure 1 shows

an example of a tabular dataset collected for HPC perfor-

mance analytics, where the columns contain features including

application, algorithm, power_cap, and the rows

contain samples. The target column is denoted as runtime,

which describes how long an application takes when being run

with a specific algorithm, bandwidth level, task
count, power cap, and thread count. While the ex-

isting performance analytics research captures user inputs and

the respective application performance in tabular format, this

format only allows most downstream ML models to exploit

relationships across the features within each sample but not

across all samples directly.

Finding an effective representation learning technique for

tabular data is an active research area. Tree-based models
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such as XGBoost [9] have achieved encouraging enhancement

in improving the fidelity of regression problems for real-

world applications [10]–[12]. Since missing measurements of
hardware features is common in HPC (represented as NaN
values for certain features), existing supervised algorithms
perform poorly or become inapplicable [13] in predicting
the execution time using NaN-filled fetures. Moreover,

performance samples in real-time monitoring systems arrive

in a stream, which makes tabular methods rebuild models

from scratch every time a new sample appears. To overcome

these issues, existing literature has proposed an Attentive

Interpretable Tabular Learning (AITL) technique such as the

TabNet [14] model. Nonetheless, the TabNet model also uses

deep learning techniques to leverage the correlations among

features within each sample while leaving relationships among

the samples largely unexploited. To overcome this shortcom-

ing, the literature uses extensive feature engineering and pre-

processing steps, which come at a high cost and requires a

human in the loop.

To address the gaps mentioned above, we propose to
investigate a novel approach of transforming tabular data
into a graph data structure to model the correlations
among features and samples explicitly. Specifically, we
hypothesize that using a graph structure to describe a per-
formance dataset (spanning many samples) makes similarities
between samples and features explicit, thus constructing the
idea of neighborhoods. The rationale for organizing samples

based on similarity is that performance samples with similar

feature values, e.g., number of threads = 4 and 6, are

likely to result in similar runtimes. In contrast, samples with

vastly different features, e.g., number of threads = 4

and 16, are likely to result in widely different runtimes.

However, unlike social networks or disease propagation

domains, a performance graph is not given. We overcome this

gap by proposing two different approaches for constructing a

performance graph called Performance in a Graph (PinG) and

evaluating them based on how they impact the effectiveness of

the downstream analysis techniques. Another motivation of the

PinG formulation is that for streaming performance analytics

systems, where labeled data is scarce, and it is too expensive

to rebuild models when new samples arrive, new unlabeled

samples can be placed in the existing dataset based on their

inherent neighborhood similarity. To our knowledge, the idea
of transforming tabular performance data into graphs to
improve regression models’ effectiveness has never been
explored in the HPC performance analytics domain.

To summarize the contributions of this paper, we:

• Transform tabular performance data into a graph data

structure (PinG) to capture relationships between samples

and features.

• Build the PinG structure using two methods (since the

performance graph is not given) and explore their ef-

fectiveness in improving the performance of downstream

regression tasks.

• Develop a novel representation learning technique that

can automatically refine the edges between samples
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Fig. 2: Illustration of the Single-graph construction approach

using N Cosine similarity. Here, N is a user-defined parameter

that determines the density of the performance graph.

(nodes in PinG) based on feature and sample similarities

using self-supervised Graph Neural Networks (GNNs).

• Develop an end-to-end framework that implements the

proposed data transformation and representation learning

techniques to build effective embeddings for explainable

downstream models.

We evaluate the effectiveness of the generated embeddings

from GNNs based on how well they make even a simple feed-

forward neural network perform for regression tasks compared

to other state-of-the-art representation learning techniques.

Since the characteristics of problems in HPC are unique,
e.g., regression tasks, missing labels, missing measure-
ments, streaming data, scarcity of training samples, this
paper focuses solely on the applicability of our proposed
approach in the context of the HPC domain. Thus, we use

ten HPC performance datasets collected on three supercom-

puting facilities. To study the applicability of our proposed

design on ML datasets, we also present evaluation using

three ML benchmarks. Our evaluation demonstrates that even

with up to 25% random missing values for each dataset, our

method outperforms commonly used graph and DNN-based

approaches. Specifically, our method achieves up to 61.67%

& 78.56% improvement in Mean Square Error (MSE) loss

over DNN for the HPC and ML datasets, respectively.

II. DESIGN

We hypothesize that holistically capturing the relationships

across samples and parameters enabled by the graph formu-

lation of tabular data can improve the effectiveness of the

downstream ML tasks.

A. Rationale for PinG

The rationale for organizing data as a graph compared

to the state-of-the-art dictionary-based approach is that a

graph structure can inherently describe relationships among

features and samples, allowing downstream ML tasks to cap-

ture information from relevant neighbors by exploiting these
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Fig. 3: Outcome of the batched-graph construction approach.

interrelations. However, unlike other research domains where

the graph structure is explicitly provided, the graph from HPC

data needs to be constructed. While data samples can directly

map to nodes, edges between samples need to be defined

explicitly or inferred automatically. On the other hand, the

dictionary-based approach only leverages feature extraction to

generate the representation vector, whereas the graph structure

leverages both feature extraction and the relationship between

the samples in generating the representation vector.

The graph design adopts the architecture of an undirected

weighted graph G = (V,E,A) to represent a performance

dataset, where each node Vi ∈ V denotes a sample, and

edge ∈ E indicates a relationship with another measurement.

A ∈ RNxN is an adjacency matrix that specifies the weights

on the edges, where Ai,j corresponds to the edge weight

between nodes Vi and Vj that can be calculated based on

their similarities. For data that belongs to the Euclidean space,

Aij can be computed using a distance metric between Vi

and Vj . However, for non-Euclidean or dense data such as a

tree, building Aij using Euclidean distance is not meaningful.

Hence, instead of using explicit distance measures to construct

the final graph, we propose to first, construct a fully connected

initial graph using measurements as node features and explicit

distance measures such as cosine similarity to calculate the

initial edge weights, and then, iteratively refine the node and

edge features through an automated graph edge inference

method using self-supervised learning.

B. Initial PinG Construction

This section presents two approaches for generating the

initial PinG graph from the tabular data.

Single-Graph Construction Approach (SGC): In this ap-

proach, we propose to build a single graph for the whole

dataset where each sample represents a node. The initial edges

in PinG are computed using the Cosine similarity algorithm by

measuring the cosine angle between the current sample and all

other samples. A high cosine similarity indicates that the angle

between the two samples is small; therefore, the two samples

are similar to each other. Using this technique, we calculate

the cosine similarity for each sample with all different samples

in the dataset and then choose the top N similar samples.

Here, N is a hyper-parameter that users can adjust for better

model performance or specify based on memory constraints.

Figure 2 demonstrates the cosine-similarity-based neighbor

selection for a given node where N = 3. This step can be

parallelized using a data-parallel ML technique that we will

pursue in the future. After building the edges between similar

samples, the edge weights are initialized to 1 and passed to a

GNN model using self-supervised learning. The model assigns

higher edge weight to similar data and lower edge weight to

dissimilar data, thus explicitly encoding the similarity between

samples and their features. Algorithm 1 shows the algorithmic

steps of this process.

Algorithm 1 Single Graph Construction Approach

1: Input: x is a tabular dataset., n minimum number of

neighbours

2: Output: graph, a NetworkX graph generated from the

tabular dataset

3: distance ← cosine distance(dataset)
4: declare empty arrays of sources and destinations
5: for all index, distance ∈ distances do
6: source ← [1, N + 1]

7: append source in sources
8: similars ← sort(distances)
9: destination ← similars.top(N + 1)

10: append destination in destinations
11: end for
12: edges ← zipped(sources, destinations)

13: graph ← an empty NetworkX graph

14: create [1...N+1] nodes in the graph
15: add edges from the edges list

16: add node features and edge features in the graph
17: remove self-loop from the graph
18: return graph

Batched-Graph Construction Approach (BGC): In this

approach, we propose to generate clusters of samples using

unsupervised learning to find groups within the data based

on similarity to build M graphs, where M is the number

of clusters. This approach is memory efficient since it uses

batches of samples instead of all samples for building each

sub-graph centered around each sample and leverage the av-

eraging effect. The BGC method selects different cluster sizes

to create different-sized batches, as illustrated in Figure 3,

thus the cluster size is a hyperparameter to our algorithm.

To further optimize this approach, we can reduce the number

of edges by connecting the top N similar neighbors to each

node, as explained in the first approach. We demonstrate the

process in Algorithm 2. In this paper, we choose Hierarchical

Density-based Spatial Clustering of Applications with Noise

(HDBscan) [15] due to its parameter flexibility. HDBscan

encodes the input samples into transformed space according

to their density, then builds a minimum spanning tree (MST)
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to find the cluster hierarchy, and finally extracts the generated

cluster.

Algorithm 2 Batched-Graph Construction Approach

1: Input: x is a tabular dataset., N minimum number of

neighbours

2: Output: graphs, batched generation of graphs

3: graphs ← empty array

4: clusters ← a group of clusters from the sample

5: for all group ∈ clusters do
6: distances ← cosine distance(group)
7: declare empty arrays of sources and destinations
8: for all index, distance ∈ distances do
9: source ← [1, N + 1]

10: append source in sources
11: similars ← sort(distances)
12: destination ← similars.top(N + 1)
13: append destination in destinations

14: edges ← zipped(sources, destinations)

15: graph ← an empty NetworkX graph

16: create [1...N+1] nodes in the graph
17: add edges from the edges list

18: add node features and edge features in the graph
19: remove self-loop from the graph

20: append graph in graphs
21: end for
22: end for
23: return graphs

C. Self-Supervised Learning

Since a large number of streaming performance samples in

HPC are unlabeled, supervised learning is not ideal. In con-

trast, Self-supervised learning (SSL) algorithms can recognize

and understand patterns from unlabeled samples. The main

idea of SSL is to automatically generate a representation of

the input data and refine it using feedback from the model,

showing promising results in Natural Language Processing

(NLP) [16], [17]. Hence, in this paper, we propose leverag-

ing self-supervised learning to develop an automated edge-

inference-based method that optimizes the PinG edge weights.

D. Putting It Altogether for Representation Learning

Graph Neural Network (GNN)-based representation learn-

ing techniques [18] can represent nodes, edges, and sub-graphs

in low-dimensional vectors. These techniques capture com-

plex and non-linear relationships among samples and features

across the whole dataset to build the embeddings. Figure

4 presents our proposed end-to-end representation learning

pipeline. After the initial graph is constructed using one of

the SGC or BGC methods presented in Section II-B, the

initial graph is passed to a convolution layer for creating self-

supervision and then passed to a graph-based learning model

for building embeddings. The embeddings are then extracted

from the second-to-last layer and passed to a feed-forward

neural network to calculate MSE. The error then propagates
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Fig. 4: The end-to-end pipeline of learning the optimized graph

from initially constructed PinG formulation. Input graph and

its edge weights are fed to a GNN model with self-supervision

for constructing an embedding for the entire dataset. Here,

solid lines represent forward propagation, and dotted lines

represent backpropagation to enhance the edge weights.

back to the self-supervision and graph-based models to provide

feedback and fine-tune.

Specifically, in this work, we propose to use GNN [19]

to learn the embeddings from the constructed graphs. The

main advantage of the GNN architecture is that the learning

equation leverages edges connected between a node to its

neighbors to compute that node’s vector representation. This

operation is known as message passing. One of the most recent

GNN architectures is GraphSAGE [20], which learns each

node’s vector representation inductively by allowing complex

aggregation functions for message passing. Thus, message

passing makes GNN generalize to unseen samples during the

deployment of the model by representing the unseen sample

to the neighboring nodes. The GraphSAGE model generates

a vector representation for each node and then applies semi-

supervised node regression to produce a regression value for

each node. We refer to the representation learning pipeline

that uses SGC as the input as Self-supervised Graph Neural

Network (SSGNN), and that using BGC as Self-supervised

Batched Graph Neural Network (SSBGNN). In Section V,

we compare the performance of using GraphSAGE as the

main driver of SSGNN and SSBGNN with that of other

methods such as Graph Convolutional Network (GCN) and

Graph Attention Layer (GAT). Our extensive experiments
show that the choice of the driver method can impact
accuracy of our proposed method and is dataset dependent.

III. IMPLEMENTATION

We implement the proposed representation learning pipeline

using the Networkx (NX) [21] and Deep Graph Library

(DGL) [22] in Python with the PyTorch back end.

A. Pre-processing

Since the core of our approach is to find a better representa-

tion of the input data automatically, we used minimal process-

ing, precisely two pre-processing techniques: standardization

and imputation of missing values.

Standardization: To standardize the input data into a common

scale, our pipeline transforms the data using the standard

scaler algorithm provided by sklearn [23]. The standard
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scaler algorithm removes the mean and scales the data

based on the unit variance so that the scaling of each feature

is independent of the other features; however, eventually, they

are all scaled in the same way and have equal weights.

Imputation: To address the missing values in the input data,

our pipeline uses the Simpler Imputer function provided

by sklearn. The Simpler Imputer function finds the miss-

ing values and replaces all missing values in the column based

on a selected strategy. We used the feature column’s mean to

replace any missing values.

B. Classifier Optimization

Drop-out Layer: We randomly drop some of the edges to

the subsequent layers’ neurons during the training phase. The

drop-out probability is a hyperparameter. This technique is

only applied to the input and hidden layers of the model during

training and does not affect the testing set.

Optimizer: The loss gets calculated based on the loss function

in every epoch, and the optimizer tweaks the model parameters

to minimize the loss. This work uses the Adam optimizer [24].

Activation Function: The pipeline uses an activation function

in each neuron node in the neural network. Based on multiple

experiments, we choose Rectified Linear Unit (ReLU) as the

activation function.

Removing self loops: A node’s closest neighbor when com-

puting cosine distance is the node itself, which introduces self-

loops in the graph. So, while choosing the top N neighbors,

we consider the top N + 1 neighbors first instead (line 12 in

Algorithm 2 & line 9 in Algorithm 1) and then remove those

self-loops from the induced graph.

IV. EXPERIMENTAL SETUP

A. System

We run our experiments in parallel using the following

systems: Penguin Computing On Demand (POD), Google

Colab, Texas Advanced Computing Center (TACC). The POD

system consists of 96 AMD EPYC CPUs. Each CPU has

8GB of RAM based on the 64-bit x86 architecture. We

also run our evaluations on Google Colab using a machine

with Intel(R) Xeon(R) CPU with 26.75GB RAM and one

NVIDIA Tesla P100 GPU with 16GB memory. Since this work

involves running various models simultaneously, we leverage

supercomputers at the TACC center to run them in parallel.

B. Dataset Description

To thoroughly evaluate the benefit of our proposed graph

construction and representation learning technique, we use 10

HPC applications and three ML benchmarks in this work. The

Vulcan and Cab datasets contain performance data collected

from the XSBench [33] and the OpenMC [34] applications

on an IBM BlueGene Q and an Intel Sandy Bridge systems,

respectively. The Catalyst dataset combines the performance

samples from MiniAMR [26], CG [27], FT [27], LU [27], MG

[27], CoMD [28], Kripke [29] miniapps. Table I summarizes

the size, the number of features, and the target variables for

each dataset.

TABLE I: Regression dataset descriptions. “#S”, “#F”, and

“Std.Dev.” refer to the number of samples, number of features,

and standard deviation in the target values of the corresponding

dataset.

Dataset #S #F Domain Target Mean Std.Dev

Catalyst
[2]

3992 10 HPC Runtime 36.88 17.38

Cab [25] 320 148 HPC Runtime 21.04 15.65

Vulcan
[25]

321 172 HPC Runtime 23.51 29.43

MiniAMR
[26]

301 9 HPC Runtime 34.68 18.06

CG [27] 961 9 HPC Runtime 31.48 13.75

FT [27] 554 9 HPC Runtime 34.15 16.90

LU [27] 554 9 HPC Runtime 43.10 22.09

MG [27] 513 9 HPC Runtime 48.65 23.98

CoMD
[28]

553 9 HPC Runtime 41.61 4.71

Kripke
[29]

554 9 HPC Runtime 28.29 4.49

Airfoil
Self-Noise
[30]

1503 6 ML SSPL 124.84 6.90

IoT
Telemetry
[31]

1000 6 ML Temp 22.36 2.56

Beijing
AQI [32]

1000 15 ML PT08.S4
(NO2)

9.76 43.69

C. Baselines

In this paper, we compare our proposed GNN-based method

to two graph-based representation learning techniques—

GCN [35] and GAT [36], and four non-graph-based methods

commonly used for tabular data—DNN [37], XGBoost [9],

LightGBM [38], and Denoising Autoencoder (DAE) [39].

The graph-based methods use the same graph construction

approach as the SSGNN approach. Table II represents the

hyperparameters for each model and the ranges of their values

used during hyperparameter tuning. We leverage the Optuna

framework [40] to find the best hyperparameters for each

model automatically.

D. Performance Metrics

Since all datasets in HPC performance analytics contain

continuous target values, we evaluate the performance of

regression tasks by comparing the predicted runtime with the

actual one. We use the MSE loss that calculates the average

squares of the error between the predicted and the actual

labels. Using different baseline and graph-based methods,

we generate embeddings and evaluate their effectiveness by

assessing how well a simple linear regression model performs

when fed with the embeddings. Since this experiment aims to

attribute any benefit to having superior embeddings, we keep

the prediction task’s model simple.

V. RESULTS

In all experiments, we use 5-fold cross-validation by divid-

ing the data into five train/test splits, generating five different

results, and calculating the average. We ensure that the
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TABLE II: Hyper-parameters for different models.

Model Hyper-parameters Search range
DNN, XGBoost,
LightGBM, DAE,
GAT, GCN, SSGNN,
and SSBGNN

Hidden Layer Dimen-
sion

[25, 600]

Learning Rate [1e−5, 1e−1]
Dropout [0,1]
Optimizers [Adam, Adagrad,

Adadelta, SGD,
RMSprop]

Activation function [relu, elu, leaky relu]

GAT, GCN, SSGNN,
and SSBGNN

Hidden Layer Aggre-
gation

[pool,mean,gcn]

Self-Supervision
Conv. Layer activation
function

[relu, elu, leaky relu,
sigmoid, tanh]

Number of Attention
Heads (GAT model
only)

[1, 2]
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Fig. 5: Normalized MSE Loss for HPC dataset The X-axis

shows the % of missing feature values and the Y-axis shows

the normalized MSE value for different methods.

train and test sets are disjoint. Table I shows all thirteen

datasets from HPC and ML domains and Table II shows the

hyperparameters for the models used.

A. Impact of Graph Representation

The experiment aims to test our initial hypothesis that using

a graph structure to describe a performance dataset improves

a predictive regression model’s effectiveness. Figure 5 sum-

marizes the performance of HPC datasets.

From Figures 5 and 6, we can observe that: (1) The graph-

based representation learning approaches outperform DNN.

Although, DNN models can implicitly leverage higher-order

correlations through connections across multiple layers; our

experiments demonstrate that explicitly modeling the relations

between data samples in PinG improves the effectiveness of a

predictive regression model. (2) In Figures 5 and 6, we observe

that one of our proposed methods (SSGNN or SSBGNN)

outperforms GCN in all experiments across all datasets. This

is because, our proposed method (GraphSAGE with self-

supervision) captures information across the entire tabular

dataset by allowing messages to pass across neighbors. In con-

trast, GCN aggregates information across neighbors of a fixed

TABLE III: Summary of improvements using our proposed

methods compared to the baselines across datasets.

Type # of Exps. Methods Best %
Improve-
ment

#Exps. where
any of Our
Methods
Outperform

HPC 60
DNN 61.67 32
XGBoost 38.19 12
LightGBM 36.03 18
DAE 76.04 14
GAT 70.55 26
GCN 86.96 60

ML 18
DNN 78.56 8
XGBoost 56.80 6
LightGBM 41.25 6
DAE 20.38 2
GAT 74.88 10
GCN 99.99 18
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Fig. 6: Normalized MSE Loss for ML datasets. The X-axis

represents the % of missing feature values and the Y-axis

shows the normalized MSE for different methods (the lower,

the better).

distance, thus failing to capture long-distance relationships

among the samples. (3) Our proposed method performs on per

or better than GAT’s attention-based aggregation strategy in 36

out of 78 experiments. (4) Figure 5 shows that the graph-based

methods outperform XGBoost and LightGBM where the target

values have a wide range of distribution, such as in the case of

the Vulcan dataset compared to the Catalyst dataset, as shown

in Table I’s mean and standard deviation columns. Figure 6a

shows that the SSGNN method outperforms the gradient- and

neural-network-based methods in the IoT Telemetry dataset.

B. Impact of Missing Data

This experiment aims to evaluate the impact of the PinG

formulation on the performance of regression tasks when

missing data is present in the features. The rationale for

conducting this experiment is that streaming HPC performance

monitoring systems often miss recording feature values or

cannot measure target values (unlabeled) until the application

ends. To study the impact of missing data in the features

on the effectiveness of graph-based representation learning

techniques, we randomly inject missing values (NaN) in 5%,

10%, 15%, 20%, and 25% of the samples and compare the

generated embeddings from all the methods listed in Table III.

The GCN and GAT methods use the graph constructed using

our proposed single graph construction method (Section II-B).

From Figures 5 and 6, we observe that although the

decision-tree and gradient-based methods outperform graph-

based methods, our method of using GNN with self-

supervision improves the efficacy of neural network-based

methods in building effective representations, which enhances
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the performance of downstream regressions.

C. Discussion

Table III summarizes the best %-improvement in MSE

loss of our proposed methods (either SSGNN or SSBGNN)

compared to all other baseline methods. The rationale for

reporting the best of these two methods is that any of these

methods being better supports our hypothesis that transforming

performance data into a graph improves the performance of

downstream analyses. The table also reports how frequently

our proposed methods perform better than the baselines. From

Table III, we can observe that even though GAT and GCN

work on the transformed graph, our proposed embedding

learning algorithm outperforms GCN and GAT in 100% and

> 43% of the experiments, respectively, for the HPC datasets.

Our proposed method outperforms DNN more than 50% of

the times, and achieves 61.67% improvement in MSE across

all HPC datasets. It is important to note that even though the

tabular methods perform better for most of the HPC datasets,

these methods require model rebuilding when new unlabled

performance samples arrive in a streaming performance mon-

itoring system, which makes tabular methods computationally

infeasible. On the other hand, finding a neighborhood for new

samples based on similarity in a graph enables quick approx-

imation of their labels, making a graph-based performance

representation suitable for streaming scenarios.

Our experimental results show that the embedding learning

pipeline with single-graph construction approach, SSGNN,

performs better than the batched-graph construction approach

in nearly all cases, making SSGNN a superior graph construc-

tion method for the PinG formulation.

VI. RELATED WORK

A. Deep Modeling Explainability using Graphs

Researchers have transformed tabular data into graphs to

produce an explainable model called TableGraphNet [41].

TableGraphNet architecture builds one or more graphs for

each data sample. The graph node comprises the feature

attributes, and the graph edges contain the distance between

the feature attributes. Using the generated graphs for the

input samples, they extract node and attribute-centric features

for every attribute. Their evaluations demonstrate that Table-

GraphNet architecture performs similarly to a regular Deep

Neural Network model based on three classifications and eight

regression datasets, whereas our architecture demonstrates

significant improvement compared to DNN.

B. Tabular Data Prediction using Multiplex Graphs

TabGNN [42] framework takes tabular data as input, con-

structs a directed multiplex graph based on the table columns

referred to as features, and encodes each sample for an initial

node embedding. It uses a graph neural network to produce la-

tent feature embedding for each data sample. After getting the

final representation embedding, TabGNN uses Auto Feature

Engine (AutoFE) to choose significant features and then uses a

Multi-Layer Perceptron to get the final prediction. Researchers

observe that the framework heavily relies on AutoFE and

DeepFM [43], two popular DNN-based feature engineering

methods for tabular data. Their experiments show that utilizing

AutoFE+TabGNN and DeepFM+TabGNN outperform using

AutoFE or TabGNN alone, but requires longer time to train.

In contrast, our method leverages a similar graph-building

method without the expensive DNN-based feature engineering

step, thus requiring less training and testing time. As TabGNN

uses DNN based approaches and our methods outperform

DNN based approaches in most of the settings, we anticipate

that our methods will either perform on-per or better than

TabGNN.

C. Knowledge Graph for Efficient Meta-learning

Recent work such as Automated Relational Meta-learning

(ARML) [44] shows that graph structures improve the perfor-

mance of Meta-Learning [45]. On a 2D toy application with

random numbers, ARML leverages the meta-knowledge graph

to obtain a more fine-grained structure than other gradient-

based meta-learning implementations. The single limitation

of this implementation is that it can only be used with

meta-learning algorithms and has been evaluated on image

classification datasets. The ARML architecture uses DNN to

transform the input data into a feature representation. This

architecture complements our approach, where our proposed

method can convert tabular data to a graph formulation and

then leverage ARML to produce a fine-grained representation.

VII. CONCLUSIONS

This paper proposes a new data transformation approach

that converts tabular data into graphs and develops a new

representation learning pipeline using a self-supervision-based

automated edge-inference-based technique. Graph represen-

tation learning leverages relationships between samples and

features to create fine-grained embeddings, effectively improv-

ing the model’s performance and outperforming the standard

deep learning-based techniques. We evaluate our approach

using different models on multiple HPC and ML datasets and

find that relationships captured between samples and features

in a graph formulation make regression tasks robust against

missing values and perform better.
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