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Abstract

The era of extremely heterogeneous supercomputing brings with
itself the devil of increased performance variation and reduced
reproducibility. There is a lack of understanding in the HPC com-
munity on how the simultaneous consideration of network traffic,
power limits, concurrency tuning, and interference from other jobs
impacts application performance.

In this paper, we design a methodology that allows both HPC users
and system administrators to understand the trade-off space be-
tween optimal and reproducible performance. We present a first-
of-its-kind dataset that simultaneously varies multiple system- and
user-level parameters on a production cluster, and introduce a
new metric, called the desirability score, which enables compari-
son across different system configurations. We develop a novel,
model-agnostic machine learning methodology based on the graph
signal theory for comparing the influence of parameters on applica-
tion predictability, and using a new visualization technique, make
practical suggestions for best practices for multi-objective HPC
environments.

CCS Concepts

« Computing methodologies — Parallel computing method-
ologies, Machine learning, Model development and analysis;
« General and reference — Performance.

Keywords
Performance reproducibility, machine learning, graph signal analy-
sis, visualization

ACM Reference Format:

Tapasya Patki, Jayaraman J. Thiagarajan, Alexis Ayala, and Tanzima Z. Islam.
2019. Performance Optimality or Reproducibility: That is the Question. In
The International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’19), November 17-22, 2019, Denver, CO, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3295500.3356217

1 Introduction

The path toward exascale supercomputing has presented the HPC
community with several new requirements that make performance
optimization challenging. These include, but are not limited to, ad-
hering to system power budgets, minimizing network interference,
ensuring resiliency, and managing several heterogeneous devices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6229-0/19/11...$15.00
https://doi.org/10.1145/3295500.3356217

Alexis Ayala
ayalaa2@wwu.edu
Western Washington University

Tanzima Z. Islam
tanzima@txstate.edu
Texas State University

along with large amounts of data and co-scheduled components.
Simultaneously managing shared resources such as cores, mem-
ory, power, network and I/O while meeting such specified system
requirements makes these environments multi-objective, often in-
troducing conflicting optimization goals (for example, high system
throughput versus high energy efficiency). Such conflicting op-
timization goals can result in increased performance variability,
adversely affecting user experience.

Performance variability, which we define as the difference between
execution times across repeated runs of an application in the same
execution environment, is a common occurrence in HPC systems.
For example, it has been shown that network contention and inter-
job interference can lead to about 25% slower messaging rate in
large-scale physics applications despite a fixed physical node map-
ping [8]. Similarly, other experiments have indicated that using
techniques such as power capping can cause over 64% variation in
per-rank execution time at scale, introducing load imbalance in an
otherwise load-balanced application such as DGEMM [29]. Such
run-to-run variability in application codes is expected to worsen
when we operate future systems with more than one optimiza-
tion objective, such as simultaneous management of power-limits,
network interference, and temperature hotspots; or, when hetero-
geneous components such as GPUs, FPGAs, or burst buffers are
involved. Notions of optimal performance in such multi-objective
environments can be unclear, which complicates the understanding
of application behavior further. Traditionally, optimal performance
is defined in terms of the lowest execution time achieved or the
maximum number of floating point operations possible. With high
degrees of performance variation, however, such a definition may
not necessarily convey the desirability of selected system settings
in a multi-objective environment.

There exists a gap in understanding the influence of different user-
and system-level parameters on application behavior that consider
both fast execution time and low variability. While the impact of
a single objective (such as power constraints or network traffic
optimization) on application execution times has been studied, no
research exists when it comes to understanding application be-
havior under two or more such objectives—which is the goal of
this paper. We first present a unique, first-of-its-kind dataset that
varies several power, network bandwidth, task placement, and con-
currency parameters simultaneously across five benchmarks on a
324-node production system at Lawrence Livermore National Labo-
ratory. With the help of this dataset, we conduct a detailed analysis
of the influence of various parameters as well as the desirability
of system configurations. Such a dataset and associated research
is crucial for developing advanced adaptive resource management
policies for minimizing variation in future systems, and in turn, for
maximizing job throughput.
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We define performance reproducibility in terms of minimal run-to-
run variation in execution times of applications. While an ideal
scenario is one where there is no variation in execution times, we
note that such an ideal scenario is not practically feasible. Note that
we do not consider numerical or bitwise reproducibility in this work.
For performance optimality, we consider the lowest average per-
task time, which allows us to compare performance both within the
ranks of an application, as well as across various network, power,
placement, and concurrency parameters.

The paper is organized in two parts. First, we define a new metric
called desirability score, which allows us to quantify the trade-off
space between performance optimality and reproducibility for sys-
tem configurations. Second, we present a novel machine learning
technique for analyzing the impact of changing user- and system-
level parameters on performance predictability. This technique,
inspired by graph signal analysis, is model-agnostic, and can be
used to understand how reliable the output of any predictive model
applied to our dataset is. By deriving an influence score, we iden-
tify which parameters are more significant than others in multi-
objective environments. We present these influence scores using
an influence path diagram, a novel visualization technique that we
developed to facilitate comparison of feature importance.
Identifying parameters that impact performance variability can be
posed as a feature selection process in machine learning, and most
existing literature takes an exhaustive approach of exploring the
entire space for each parameter to determine their impact [8]. Such
approaches are not scalable. Furthermore, the accuracy of existing
techniques for feature selection, such as recursive feature elimina-
tion, depends heavily on a-priori knowledge of the underlying data
model, which can be difficult to obtain. We thus advocate the use
of graph signal analysis because it does not require specific model-
ing assumptions unlike traditional multivariate analysis, making it
more robust to noise in the data. In summary, the contributions of
this paper are:

e A unique dataset, collected on a production system by changing
the number of nodes, number of cores per node, network quality
of service levels, power caps, and placements of application
ranks across five benchmarks of interest in the presence of an
interfering application. Such a dataset will serve as an example
of data collection for future systems and enable reproducibility
research in the community.

o Definition of the desirability score, a quantitative metric that en-
ables comparison of different system configurations, including
results on constrained configurations (such as network-limited
or power-limited ones). This metric provides insights about
expected variation in a given execution environment, and quan-
titatively explains the trade-off space between performance
optimality and reproducibility.

o A novel, model-agnostic machine learning approach based on
graph signal analysis that allows for comparison of the in-
fluences of various system- and user-level parameters on the
predictability of application behavior; and a novel visualization
technique based on path diagrams for the same.

o Best practice suggestions to achieve high reproducibility along
with high performance for both HPC users and system adminis-
trators operating in multi-objective environments. To the best
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Table 1: Applications of Interest

Name | Description Size and Scaling
Characteristics
LU Lower-Upper Class D, Strong
Gauss-Seidel Compute/comm.-
bound
MG Multi-Grid NAS | Class D, Strong
Memory-bound
FT 3D Fast Fourier | Class D, Strong
Transform Comm.-bound
Kripke | 3D Neutron- nprocs: 8-16, Weak
transport zones: 128, 256
Compute-bound
CoMD | Classical i,j,k: 8-16, Weak
Molecular X,y,z: 240-480,
Dynamics Memory/comm.-
bound

of our knowledge, this work is the first to provide a mechanism
for co-designing an environment that is capable of addressing
both optimality and reproducibility.

The rest of the paper is organized as follows: Section 2 presents a
real-world motivating example that led to this research and drives
the need for performance variability research in modern HPC en-
vironments. Section 3 presents a high-level view of our approach
along with description of the dataset and the desirability score. Sec-
tion 4 presents the details of the machine learning approach that
computes the influence score of each of the parameters, and Section 5
describes our analysis, the system design questions they answer,
and the observations in detail. Section 7 concludes the paper with
idea about how our observations can be used for future work.

2 Real-world Example

This section illustrates the conundrum of performance optimality
versus reproducibility, and motivates the need for the machine
learning model as well as the visualization approach explained later
in this paper. A large part of this research began as a result of a real
problem that was encountered on the Catalyst cluster at Lawrence
Livermore National Laboratory, which took over six months to
resolve. Catalyst is a 150 TeraFLOPS, 324-node production capacity
cluster. Each node in this cluster has two 12-core Intel Xeon CPUs
and two HCA network adapters. It is supported by an InfiniBand
QDR network with a two-level fat-tree topology, and has a layout
of a total of 18 switches, with 18 nodes per switch.

In early 2017, some users that were conducting experiments on the
Catalyst cluster observed severe run-to-run performance variability
with up to 2-5x slowdowns in their applications’ execution time
with the same execution environment. This led to user applications
being killed prematurely by the resource manager as they exceeded
their allocated time limits. Such concerns reported by users moti-
vated the system administrators to collect data to determine the
source(s) of such variation. Initial observations pointed to network
traffic and inter-job interference issues, and this was verified with
several mpiGraph [49] tests that allow for contention visualization.
A few network switches were observed to be slower than expected,
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Table 2: Infiniband Service Level Descriptions

l Level [ Communication Usage [ Priority and Bandwidth

0 Application-level/MPI 87% of high-priority lane
1 Lustre 13% of high-priority lane
2 Not used 71% of low-priority lane
3 Not used 29% of low-priority lane

but upon further testing, hardware issues were ruled out. This initial
analysis could not pin point the exact cause of observed variation.
With the initial information from system administrators and af-
ter discussions with fellow researchers, we set out to conduct a
more rigorous exploration of network-level variation in order to
determine techniques to mitigate it. Our approach was to explore
user-level knobs for network quality of service by analyzing In-
finiBand Service Levels using control jobs. We defined a control
Jjob as an application whose performance (execution time) and re-
producibility (repeatable execution times) we were interested in.
In order to allow for emulation of real network traffic, we used a
communication-bound interfering application in the background.
Running a communication-bound interfering application assumes
the worst-case scenario in a shared cluster environment - a sce-
nario where multiple user applications are executing on the shared
cluster and are all communicating and contending for network
resources. This assumption enables us to collect data in a manner
that allows studying the performance of the application of interest
(that is, the control job) in a realistically emulated and worst-case
shared cluster environment. We describe our selected applications,
experimental setup and findings from this motivational study in
the subsections below.

2.1 Representative Applications

We pick five representative applications as control jobs: LU, FT and
MG from NAS Parallel Benchmark suite [4], and the Kripke and
CoMD proxy applications [38, 53]. The details of these applica-
tions are presented in Table 1. We generate inter-job interference
by using the OSU MPI_Alltoall benchmark [1] using 32KB mes-
sages that generates bursty communication at random intervals. All
benchmarks are MPI-based, compiled with Intel compiler 16.0.3 and
MVAPICH 2.2. Each representative application ran for at least 45
seconds (we increased iteration counts) and was repeated thrice to
ensure reliable timing data. Note that strongly-scaled applications
are ones where there is a fixed total problem size and the time to
solution depends on the number of nodes used. On the other hand,
weakly-scaled applications have a fixed problem size per processor,
and using more nodes on such applications allows users to solve
larger total problem sizes. We also pick two task placement algo-
rithms: packed and spread. Packed places all application ranks
as close together as possible on the network, so that the fewest
number of switches are used from the fat tree. Spread distributes
the ranks in a round-robin manner across the switches. The default
is a random assignment of application ranks to physical nodes.

2.2 Network Quality of Service

In our cluster, four network quality of service levels associated with
four virtual lanes are available as per the OpenSM configuration.
These are detailed in Table 2. Two of these service levels are not
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used by default. The default setting is for all users to run their
applications at the service level of @, and to have the Lustre file
system [37] traffic use the service level of 1. For our experiments,
our goal was to first understand if users can utilize different virtual
lanes and use service level knobs to reduce interference, mitigate
variation and improve reproducibility. Thus, for controlling the
network QoS, we use the IPATH_SL environment variable to select
the virtual lanes [17] to send application traffic through a different
lane than the default setting. Setting IPATH_SL to @ corresponds
to the application of interest having the highest bandwidth, and
setting it to 3 corresponds to the lowest bandwidth.

2.3 Determining Sources of Network Variation
The first row of Figure 1 shows the initial data we collected. Our
allocation comprised of 256 nodes of the 324-node cluster. Due to
restrictions outside of our control, the remainder of the cluster (68
nodes) was left idle during our experiments. In this experiment, we
ran 2048 application ranks across 86 nodes using all 24 cores on
each node (except on the last node) in a 256-node allocation. The
remaining nodes in the allocation (170 nodes) were running the
interfering MPI_Alltoall benchmark to emulate a shared cluster.
By default, both network adapters on the node were used.

Figure 1 compares the impact of using both the network adapters
as opposed to picking one adapter on application performance
(normalized execution time for each benchmark is shown on Y-
axis). The X-axis shows the service level combinations used for
the application followed by the interference—more bandwidth is
allocated to the application (and less to the interfering application)
as we progress from left to right on the X-axis in each of the graphs.
As mentioned previously, the default on our system is <@, @>. For
each configuration, we show multiple repeated runs with both
packed and spread placements.

Our main counter-intuitive observation here is the significant amount
of variation that we see when both adapters are used, which is the
default on most HPC clusters. Even though using both adapters can
lead to better (or, optimal) performance (it is roughly 6% faster on
average than using a single adapter when looking at the minimum
execution time in each set), it can severely impact reproducibility
for our particular hardware with its default routing algorithm. No-
tice the scale of the Y-axis, we observed over 5x run-to-run variation
in some cases, such as that of the FT benchmark.

It took over six months of active debugging to isolate this issue of
adapters and routing. Setting IPATH_UNIT selects one of the two
adapters, and once that option was used, we achieved significantly
better reproducibility as shown in rows 2 and 3 of the figure. In
this particular (yet limited) example, we had an issue that could be
addressed through a static fix, and the sources of variation were not
as complex. Future systems with power, network, and concurrency
objectives are expected to be much more challenging with dynamic
variation, and several opportunities for adaptive management exist.
We believe users and system administrators should be able to re-
quest reproducible performance if needed. Additionally, a quantita-
tive mechanism to compare the trade-off space between optimality
and reproducibility should be developed. This led us to the real-
ization that large scale collection and analysis data in a complex
environment, involving network, power, and concurrency tuning
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Figure 1: Impact of IPATH_UNIT on application execution times with 2048 tasks. Y-axis denotes normalized runtime, X-axis
denotes service level combinations. Going from left to right on X-axis gives the application more bandwidth. The first row
represents use of both network adapters, and the second and the third row represent the cases when the first or the second
adapter is chosen. Packed and spread represent the application rank layout on the network.
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Figure 2: Overview of our approach

is critical for future resource management and adaptive systems.
This led to us building the dataset and the graph signal processing
based scoring mechanism that we present in the rest of this paper.
Section 3 discusses how we approach this problem and design a
workflow to ponder about such trade-offs.

3 Workflow

We now describe the overall methodology for identifying the impact
of user- and system-level parameters on the average execution time
of applications, both from optimality and reproducibility perspec-
tives. In our work, we consider three system-level parameters based
on network and power resources, and two user-level scaling pa-
rameters. We vary these parameters simultaneously to understand
application behavior, identify desirable system configurations, and
quantify parameter influence and importance. We follow a workflow
of data collection, analysis, and visualization, as shown in Figure 2.
We address the following key research questions:

o Which system-level and user-level parameters impact applica-
tion behavior and what are their relative importance?

e Which system-level and user-level parameters improve or worsen
performance predictability of applications?

e Given a system-level configuration, how much performance
variation can a user expect across applications?

e Which system-level configurations are preferred compared to
others?

Similar to Section 2, we vary tuneable parameters and collect the
execution times of five different control applications with an interfer-
ing application running in the background. We view this problem
as that of influence analysis, where we look at how greatly adding
a parameter to an already selected set of parameters impacts the
performance predictability of the applications. Additionally, we
derive a new metric as a function of mean and variance that al-
lows us to explore the optimality and reproducibility trade-offs and
gauge the desirability of certain system settings. Note that we are
not considering a certain modeling approach here, instead, we’re
analyzing the general predictability of a dataset. The goal of this
work is to identify how reliable the output of any predictive model
would be. The following subsections describe this in detail.

3.1 Data Collection

We first collect a one-of-its-kind dataset that looks at performance of
applications at various scales, network bandwidth levels, placement
styles, and power limits. As discussed previously, we distinguish be-
tween two types of configuration parameters in this paper—system-
and user-level. For system-level, we consider task placement across
switches (L), bandwidth-level (N), and power cap for the control job
(P). For user-level parameters, we vary the number of node count
(C) and the number of core or thread count (T).
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Table 3: Description of configurations, optimality and reproducibility scores that will be used throughout the paper.

Placement (L) packed, spread, random
System-level Bandwidth (N) 1(Llow)-5(high)
Config. Parameters Power cap (P) 64W, 80w, 115W
Application-level Task count 512,1024,2048,4096
Core count 24,20,16

Optimality score

Minimum average per-task execution time | The lower, the better

Desirability score [Equation 1 in Section 3.2] | exp

—meanXvariance

The higher, the better

Table 3 describes configuration parameters that we varied to collect
data on the Catalyst system described in Section 2. The five rep-
resentative applications and the interfering application used were
described in Section 2. In addition to looking at task placement and
InfiniBand service levels, we also collect data under power limits
with varying levels of concurrency (by varying both number of
nodes and cores per node). The former enables us to understand
scenarios in future clusters where power may be constrained, and
the latter allows us to look at varied memory intensity. Using all
cores on a node could mean limited memory bandwidth for an appli-
cation that is memory-intensive, and often running fewer cores per
node in such scenarios can offer significant caching and memory
bandwidth improvements [51, 63].

For power-capping, we use Intel’s RAPL technology [18, 30] which
is supported through libmsr [57, 65] and msr-safe in user-space
on the Catalyst system. On our production clusters with supported
Intel architectures, the msr-safe kernel module is deployed as part
of the operating system. This kernel module allows for whitelisting
of privileged RAPL registers as well as access to specific bits of
RAPL registers through group permissions. This enables our users
to both measure and control power from user space with libraries
such as 1ibmsr. Currently, several capacity clusters at other similar
HPC sites with Intel architectures use msr-safe and expose such
knobs in user space. Equivalent modules for IBM systems (Power8
and Power9) are available through the OPAL firmware [13] and can
be set up in user space.

We vary the CPU power range between 64 W and 115 W (per socket,
each node has two sockets). Here, 115 W corresponds to the scenario
of peak or full power, 64 W corresponds to a scenario where power
is extremely constrained, and 80 W corresponds to a scenario of
medium power. We vary the number of tasks (MPI ranks) to be 512
tasks, 1024 tasks, 2048 tasks, and 4096 tasks. For each task count, we
vary node-level concurrency by varying the number of cores per
node from 16 through 24, in increments of 4. This in turn changes
the total number of nodes that the application uses, and allows us
to capture scaling and memory behavior in our dataset. Because
there are 24 cores per node in the used system, the last node in the
allocation for a fixed number of tasks may have fewer ranks. Note
that this does not impact our performance numbers or analysis. For
InfiniBand service levels, we use five combinations as opposed to
the three described in Section 2. We also set IPATH_UNIT to 1, so
that we don’t include the known routing issue in our cluster. The
five service level combinations we use are <2,0>, <1,0>, <0,0>,
<0,1>, <0, 2> where the first value denotes the service level of the
representative application, and the second value denotes the service

level of the interference. The default is <@, 0>. The remaining four
configurations should ideally be interference-free (Lustre traffic was
disabled during our experiments), because we send the application’s
communication traffic with a different service level than that of
the interference. Having a lower service level for the application
represents lower bandwidth for the application. For the remainder
of the paper, we denote these five service level combinations as
bandwidth levels 1 to 5, where 1 corresponds to low bandwidth and
5 corresponds to high bandwidth for the application.

3.1.1 Scale of Data Collection Similar to the setup in Section 2,
we collect our data on 256 of the 324 nodes in the cluster during
an allocated dedicated time. Given the exhaustive nature of these
experiments, we collected up to three repeated runs on the random
placement, and only one data point each for the packed and spread
placements. Additionally, because of limited time on the cluster,
we collected a full dataset for 512 and 1024 tasks, but a smaller
number of configurations at 2048 and 4096 tasks. We also had some
experiments that failed due to scheduler issues outside our control.
As a result, we collected 874 data points for 512 tasks, 900 data
points of 1024 tasks, 654 data points for 2048 tasks, and 300 data
points for 4096 tasks spanning the above configurations. The fastest
configuration (that is, highest power cap, maximum bandwidth,
and highest task count) is tuned to execute for at least 15 seconds.
Note that the slowest configuration for the same application (that
is, lowest power cap of 64 W, minimum bandwidth, and the low-
est task count) may execute about 8x slower than the fastest for
strongly scaled applications, and about 4x slower for the weakly
scaled applications (due to lower power cap and lower bandwidth).
Running these 2728 experiments took a little under 5 days of ded-
icated and uninterrupted execution time on our 324-node shared
cluster, including time for setup, job launch overheads, and gen-
eral debugging at scale. Because Lustre was unmounted, we also
had high job turnaround times (despite relatively short application
duration) because we were writing out several files.

3.1.2  Challenges in Data Collection Collecting such data at scale
with all the different network, power and placement parameters
was non-trivial, making this a unique dataset for analysis of multi-
objective application performance. A key challenge when collect-
ing such data is the need for dedicated time on the shared cluster.
This is because even though some of these knobs are available in
user space, tuning these power, network quality of service, and
placement knobs impacts other regular users on the cluster and
can drastically degrade performance of their applications. Running
such experiments repeatedly can also cause temperature hotspots
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Figure 3: This graph is generated for the FT application with varying number of task placements, service levels, and power
caps. The Y-axis has been normalized by the range as well as the number of tasks. The red horizontal line corresponds to the

minimum average (normalized) per-task execution time.

or thrashing of the native resource manager, resulting in unin-
tended failures for other users. Typical requests for dedicated times
on shared clusters do not exceed 12 hours and are granted once
per week. In order to enable data collection for over 5 days, sys-
tem administrators often request that such dedicated time requests
be spread across multiple days and multiple time slots. However,
spreading such dedicated times over multiple months (which would
have been the case for our research) can introduce noise and in-
consistency due to upgrades in low-level system software or due
to temperature changes in the machine room, etc. Additionally, to
allow for a clean execution environment, the Lustre file system
traffic which is typically sent through Service Level 1 needs to be
entirely disabled, calling for system administrator support. We had
a wait time of a few months before our 5-day long dedicated time
request was granted in 2017, which made collecting such a dataset
challenging and non-trivial, and also making it difficult to re-run
failed experiments. We note that availability of such performance
data is critical for other performance analysis tools as well as for
co-design of future hardware, and making such a dataset available
is a unique contribution of this paper. This realization is also the
motivation for the proposed machine learning approach for identi-
fying a small subset of the configurations that can be explored to
achieve both low execution time and low variation guarantee.

3.2 Analysis and Visualization

Although the first part of our paper is motivated by collecting a
large dataset, we strongly believe that such an exhaustive set of data
cannot be collected by all users for every application they want to
run on an HPC system. Hence, the next part of our paper proposes
ways so that we can gain application-independent insights about
which of the parameters impact the performance of applications
(both the average runtime as well as its reproducibility), so that
under a given constraint, a user can identify the minimum number
of configurations to explore for an application to estimate an av-
erage time which will be reproducible. With this goal, we propose

a novel graph signal analysis based machine learning approach to
conduct influence analysis on the various parameters in our dataset.
By modeling our dataset as a neighborhood graph and relying on
Graph Fourier Transform, we view a set of coefficients that allow
us to identify the degree of variation in our data and understand
relative influences. We use this model-agnostic analysis to derive
the influence score, which allows us to determine which parameters
or sets of parameters are more important for performance tuning
than others during the development of predictive models in multi-
objective environments. Based on the influence score, we analyze
different system-level and application-level parameters and their
impact using a novel visualization approach, which we refer to as
the influence path diagram. We also analyze constrained configura-
tions, such as the power-limited or topology-aware configurations
in detail. Here, we present a general system-level configuration that
works well for our cluster - this is a counter-intuitive configura-
tion that gives low bandwidth to the application, uses the spread
placement, and uses maximum power per socket of 115 W. For this
analysis, we define a desirability score, which allows us to balance
optimality and reproducibility. Such an analysis can be conducted
on any other cluster (with similar or other multi-objective data
such as temperature hotspots or communication requirements, if
necessary) to attain similar insights on application performance,
desirable configurations, and parameter influence. The strength of
our approach is that regardless of the number of tunable parame-
ters, our approach provides a set of easily interpretable suggestions
about which system configurations are worthy of exploration out
of the inordinate number of possibilities. We present the details of
these scores in Section 4. We believe such an approach can lead to
development of better mitigation strategies and adaptive system
software such as variation-aware resource managers.

Figure 3 presents a traditional analysis of the average and the spread
of per-task execution times for the application FT. The red hori-
zontal line corresponds to the optimality score for an application,
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as it represents the lowest average per-task execution time this
application, or any similar application, can achieve. Our optimality
goal is to achieve a per-task execution time as close to the red line
as possible. We consider the average or mean value in order to
accommodate for issues such as noise and jitter, and we consider
the lowest across all configurations to capture the notion of speed
of calculation. Note that we can always consider the median or
the minimal values, we picked the average as that allows us to
set a reasonable user expectation of optimality (based on how job
durations are requested).

From this figure, we can observe that configuration <location =
spread, bandwidth level = 1, power cap = 115W> does not result in
the optimal performance for FT, however results in the tightest pos-
sible bound on the variability of the execution times across several
runs. On the other hand, configuration such as <location = random,
service level = 1, power cap = 115> produces both performance that
is neither optimal nor reproducible (high variance). Given that we
already have this data available, we can make another observation
that, those configurations that result in both low average per-task
execution times, and low variance across runs, are the desirable
ones. Based on this observation, we propose a new metric called
“desirability score” that helps us compare different configurations
based on a score as opposed to looking at so many box plots side-by-
side. Equation 1 explains how desirability score is computed based
on the mean and variance execution times for each application. We
use the desirability score metric to compare across configurations.
The higher the desirability score, the better the configuration is in
achieving both low average per-task execution time as well as low
variation across several runs.

desirability_score = e meanxvariance (1)

3.2.1 Generalization of Results This work develops a methodol-
ogy that system administrators and users can utilize to understand
the trade-off space on performance optimality versus performance
reproducibility. It is important to note that every HPC system is
different in terms of the user-level and system-level knobs that
are exposed. Typically, site-level policies as well as the underly-
ing microarchitecture determine the specific knobs that are made
available for tuning. This work specifically contributes a general
approach for systematically exploring the trade-off space between
optimality and reproducibility. The observations made in this paper
will apply to the 324-node cluster described in this paper as well as
other HPC systems with similar knobs and microarchitectures. The
results also explain how to interpret the results from our method-
ology when applied to a new system. Similar analysis needs to
be performed on other HPC clusters that have different user-level
and system-level knobs. The presented methodology for influence
analysis and visualization using influence path diagrams will still
lead to the identification of the knobs to tune.

4 Methodology

Our influence analysis method builds upon the existing theoretical
framework of graph signal analysis (GSA) [62]. The underlying
premise of our approach is in modeling the observed data as a
neighborhood graph, wherein the nodes correspond to runs from
different configurations of system parameters and the edges encode
crucial information to perform information propagation and data
interpolation. This modeling assumption is driven by the intuition
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that similar configurations (as measured directly in the parameter
space) have the tendency to produce similar performance. In con-
trast to conventional graph embedding approaches, GSA enables
the study of a function defined at the nodes of a graph with respect
to the structure encoded by the graph. This is akin to performing
Fourier analysis of functions defined in the Euclidean space, to
study their spectral characteristics. In our setup, the function, also
known as a graph signal, corresponds to the actual performance
metric (that is, execution time) observed for each of the configura-
tions. We first begin by describing the fundamental tools in graph
signal analysis, and subsequently present our algorithm.

4.1 Graph Signal Analysis

Definitions: Formally, an undirected weighted graph is repre-
sented by the triplet G = (V,E,A), where V denotes the set
of nodes with cardinality |'V| = N, & denotes the set of edges, and
A € RNXN js an adjacency matrix that specifies the weights on
the edges, where A; j corresponds to the edge weight between
nodes v; and v;. Let N; = {jlA;j # 0} define the neighbor-
hood of node v;, i.e. the set of nodes v; that have incident edges
to it. The normalized graph Laplacian, L, is then constructed as
L =1-D 2AD"'/2 where D is the degree matrix with diagonal
entries Dj; = 3¢ n; Aj,j indicating how strongly connected a node
is to the rest of the graph, and I denotes the identity matrix.
Given the graph G, we define a graph signal s, a numerical function
indexed by V, as follows: s = [s1,s2 - - - sN]T; Vs; € R. For example,
an image can be represented as pixels defined on a 2—D regular
lattice graph, and in this case, the pixel values form the graph
signal. Following [62], we define the graph shift operator, akin
to the time-shift operator in classical signal processing. With the
graph shift operation, the signal s; indexed by the node v; can be
transformed as a weighted linear combination of the signal values
at the neighboring nodes:

N
Si = Ajjsj = s=As. (2)
j=1

Here, A parameterizes the dependencies for the local neighborhood.
Consequently, the graph shift can be defined directly using the
adjacency matrix A, the transition matrix D~ !A, or the normal-
ized graph Laplacian L. In our implementation, we use the graph
Laplacian to define the graph shift.

4.1.1  Graph Fourier Transform: Performing spectral decomposi-
tion of a signal space S is at the core of GSA, to generalize the
notion of signal analysis from Euclidean spaces to arbitrary graphs.
In general, spectral decomposition of a signal space corresponds to
identifying subspaces that are invariant to the choice of filtering, i.e.
the filtered version of a signal from subspace Sy still lies in that sub-
space. The set of generalized eigenvectors of the graph Laplacian,
L = UAUT, where U € RN*N s referred to as the graph Fourier
basis. Consequently, decomposition of a signal s € S corresponds
to computing its expansion in the graph Fourier basis: s = US,
where the expansion coefficients can be computed as § = U™ls.
This process is popularly referred as the Graph Fourier Transform
(GFT), and the collection of coefficients § can be viewed as the
spectrum [15]. Note that, the ordered set of eigenvalues loosely rep-
resent frequencies of signal variation, with A; to Ay representing
the smallest to largest frequencies. In other words, larger signal
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variations between closely connected neighbors correspond to high
frequencies, while smooth variations correspond to low frequencies.
In this context, the graph filtering using a graph shift operator cor-
responds to a simple low-pass filter. In other words, such a filtering
operation will retain only signal characteristics that vary smoothly
across close neighborhoods, in other words, are more predictable.

4.2 Algorithm

Identifying parameters that have a strong influence on the opti-
mality or reproducibility of performance characteristics is at the
core of our analysis. From a machine learning (ML) standpoint,
this is referred to as feature selection. Broadly, predictability and
sensitivity are two commonly used heuristics for selecting features.
While the former measures how well a feature supports the overall
prediction, the latter measures how much the prediction is bound
to change when a feature is perturbed. In practice, either of these
metrics are estimated based on an ML approach trained on the
data - this inherently involves understanding bias-variance trade-
off and the analysis results can change significantly based on the
model choice. To circumvent this challenge, we propose to employ
model-agnostic feature selection based on GSA. In the rest of this
section, we will define a novel influence score based on graph spec-
tral analysis, and describe the idea of influence path diagrams, that
can provide a comprehensive understanding of different design
choices on optimality.

4.2.1 Influence Score: We propose a general metric for qualita-
tively evaluating the influence of any subset of design features in
predicting performance. For a given set of input features for N
cases, we first construct a k—nearest neighbor graph G using the
Gower distance between those features, which can support the use
of different data types for each of the features. Subsequently, we
compute the GFT of the performance metric s, and measure the
magnitude of the resulting spectrum. In the context of graph signal
analysis, a predictable signal is characterized by the smoothness
property with respect to the neighborhoods. In other words, we
expect a graph spectrum to be dominated by low frequency content
when the signal is predictable in the domain considered. Similarly,
a response function that is highly uncorrelated with the predictor
variables manifests as a spectrum with majority of its energy con-
centrated at higher frequencies. Note that, frequencies here refer
to the eigen bases corresponding to the smallest eigen values. We
now define the influence score for the chosen subset of features as
I = exp(—$m), where §p, denotes the average of the Fourier coeffi-
cients § from the expansion U™ !s. Smaller values for I implies that
the spectrum is skewed heavily towards the low frequencies.

4.2.2  Influence Path Diagram: To understand the complex inter-
actions between design variables in high-dimensional spaces, we
propose to leverage the influence score from GSA and produce a
summary layout of influences of different subsets of variables. Re-
ferred to as an influence path diagram (IPD), this is a directed graph
layout where each node represents different subsets of features
(drawn as circles). For example, if our design space was comprised
of two variables (x1, x2), the IPD will contain three nodes, namely
(x1), (x2) and (x1, x2). Each node in an IPD, n; contains a directed
edge to another node n; if and only if the feature sets at nodes
n; and n; differ by only one feature. For example, in the case of
a design space with 3 features x1, x2, x3, the node containing (x1)
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Configuration | ID | Parameters
(LN, P)

Traditional 1 <random, 3, 115W>
Power-limited 2 <random, 3, 64W>
Network-limited | 3 <random, 1, 115W>
Topology-aware | 4 <packed, 5, 115W>
Topology-aware | 5 <spread, 5, 115W>
Proposed 6 <spread, 1, 115W>

Table 4: Description of configurations.

will have an edge to the nodes corresponding to the subsets (x1, x2)
and (x1, x3) respectively, but not to the node with (x1, x2, x3). We
compute the influence score at each node of the IPD using only
the feature subset included at the node and indicate that score as
the fill color of the nodes. Note that, darker the color, higher the
influence score of those features. The edges encode how much the
influence changes by the inclusion of one additional feature. The
change is measured as (7 (nj) — 7 (n;))/Z (nj). A blue edge indicates
a positive change in the influence, while a red edge indicates a neg-
ative change. While, dark shaded edges correspond to significant
changes, dotted lines indicate trivial changes in influence. As we
show in our empirical studies, the proposed IPD provides crucial
insights into complex design spaces for performance optimization
and by entirely dispensing the need for explicit model design, this
approach is highly flexible, when compared to existing machine
learning pipelines.

5 Results

We divide this section into three parts. First, we present detailed
analysis of the collected data to understand the optimality and
reproducibility trade-off across configurations. Next, we analyze
selected constrained configurations and their impact on perfor-
mance variability. Finally, we address the question which user- and
system-level parameters are more influential from the point of view
of predictability of the average execution time using our novel vi-
sualization. This analysis guides a user to find the smallest set of
parameters that need to be tuned for any application to achieve
performance predictability.

5.1 Optimality versus Reproducibility

Here, we explored all possible system configurations described
previously in Table 3 for all five applications using the desirability
score, as shown in Figure 4a. Along X-axis, we show a hierarchical
grouping of rank placement, the bandwidth level, and the power cap,
which amount to a total of 45 possible configurations for our cluster.
For each such configuration, the Y-axis shows the desirability score
for the five benchmarks. We do not annotate the benchmarks in
this graph so as to get a general understanding of the configuration
space. We compare all configurations to identify conditions that
lead to a balance in performance optimality and reproducibility
using the desirability score. Note that execution times were divided
by the task count to obtain a per-task execution time.

The X-axis shows all configurations, and the Y-axis shows the
desirability scores (Equation 1) normalized with respect to the
minimum and the maximum values. The higher the score, it is more
likely that a configuration will finish quicker and the performance
will be reproducible. The size of the bubbles indicate variance across
the per-task execution times, hence the larger the circle, more the
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Figure 6: Impact of system-level parameters only.

variance. The take-away point of this figure is that the random
configurations result in both sub-optimal runs across applications
(low score) as well as more variability (larger circles). While packing
tasks onto the same router results in the most optimal execution for
some applications, tasks spread across routers and executed under
115W offers an environment where applications can finish quickly
with certain guarantee of repeatability. Hence, to execute a new
application in this HPC environment, if one would have to choose
a configuration that offers the best trade-off between optimal and
reproducible performance (high score, and all applications as close
to each other as possible), it would be <spread, 1, 115W>.

5.2 Understanding Constrained Configurations
The objective of this experiment is to compare several constrained
environments that HPC applications are likely to encounter, and
their impact on the desirability score (Equation 1). Table 4 describes
the five different constrained configurations typical HPC systems
may be running with. From Figure 4b, we observe that power-
limited configurations (e.g., configuration 2) impact performance
variability the most across all applications, and topology-aware
configurations (4, 5) result in optimal performance across all appli-
cations (that is, the average execution times of all applications is the
lowest, but variance is high). Our proposed configuration (number
6) offers a reasonable balance across optimality and reproducibil-
ity. Because there are several parameters that are different across
these configurations, and some constraints (such as power) may
be unavoidable, it is not immediately evident which parameters
are more important to tune. In order to infer the importance of
different features and sets of features, we run the next experiment.

5.3 Influence Analysis

In this experiment, shown in Figures 5 and 6, we leverage the
novel influence score computation scheme we proposed earlier to
communicate importance of tuning certain parameters to achieve
better reproducibility of the average mean.

Starting from the bottom layer, we fix the specified variables at
each step, and calculate the influence score based on the novel
methodology presented in Section 4. A darker circle means a com-
bination of parameters is more important than others in improving
predictability, thus producing repeatable observations. The graph
should be read from bottom up, different types of lines mean dif-
ferent influence values. Red and blue lines, respectively, indicate
loss and increase of influence. Dotted lines and solid lines, respec-
tively, indicate nominal and significant change in influence. Here
L is placement, N is bandwidth level, C indicates the number of
nodes, P is the power cap, and T is the number of cores (or threads).

The objective of this experiment is two fold. First, we want to
identify which parameters are influential for strongly-scaled and
weakly-scaled applications. Second, we want to understand which
system-level parameters impact the reproducibility of the average
performance for applications. The goal is for a user to not have to
run exhaustive number of configurations to identify the best possi-
ble setting for their application or system. Once a user identifies a
subset of the parameters by our approach to be influential, they can
only focus on tuning those knobs to achieve the most repeatable
optimal average runtime.

5.3.1 Strong-scaling versus weak-scaling From Figure 5, we
can observe that the number of nodes is the most important (dark
circle) parameter that impact the performance for strongly-scaled
applications (MG, LU, and FT) on the current system, while the
pair of power-cap and the number of cores is important for weakly-
scaled applications (Kripke, and CoMD). In other words, this in-
dicates that once an application is run with the above mentioned
parameters set, users can expect higher predictability in execu-
tion time from run to run on the current system. We also observe
that, after the node count, for the strongly-scaled applications,
the bandwidth level is the most important parameter that impacts
reproducibility of the execution times. One may have to tune the
bandwidth level parameter (for example, with IPATH_SL) for greater
reproducibility, which may be a system-level parameter and hence
harder to tune. On the other hand, specifying the power cap and
core/thread count (P and T) for weakly-scaled applications would
greatly improve the reproducibility of these observations.

We also observe that, for strongly-scaled applications, the node
count and the bandwidth levels (C and N) provided to the applica-
tion are the two most influential parameters to tune. There are total
5 parameters with a total of 540 combinations for evaluation (4 node
counts, 3 thread/core counts, 3 power caps, 3 location/placement
algorithms, and 5 bandwidth levels). Figure 5 suggests that a user
can only evaluate only 20 values (4 node counts, 5 bandwidth levels)
while leaving the other parameters to the default value to estimate
an average execution time which will be reproducible from run
to run for a new application. This observation reduces the total
number of configurations to evaluate for a new application with
strong scaling up to 97% on the current HPC system.

5.3.2 Impact of System-level Parameters Alone In this exper-
iment, we normalized the execution times by the total number of
tasks (Figure 6). The rationale is that we want to observe the impact
of these system-level parameters on the average execution times of
these applications and not worry about possible work imbalance
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Figure 7: Validation of our observations with two new applications on the described system. Here C indicates the number of
nodes, T indicates the number of cores, L is placement, N is bandwidth level, and P indicates the power cap.

across the tasks. A darker circle indicates that setting specific values
for a set of parameters result in greater reproducibility in per-task
execution times from run to run. From Figure 5, we can observe that
execution times across all application and all parameters tend to be
stable once the bandwidth level (N) is determined. After that, the
next parameter that impacts the reproducibility of applications is
the power cap (P). Note that not all applications are impacted by the
CPU power cap (for example, MG is memory bound and is not as
impacted). We also observe that, after adjusting the bandwidth level
and power, the task placement only improves the score nominally.

5.4 Discussion and Validation

We observe that even though the traditional configuration allows
equal bandwidth to all the running applications, it is not ideal for
high-priority applications of interest. Through our novel influence
path diagrams, we observe that the reproducibility of applications is
impacted the most by the bandwidth provided, or by a pair of system
parameters such as rank placement (location) and the power-cap
when considered together. For certain HPC systems, controlling the
quality of service parameter can be difficult. In that case, our exper-
iments show that specifying the task placement and the power-cap
could be the way to achieve reproducibility across the applications
of interest in the presence of an interference in the system. We
can also identify certain common combinations of system-level
parameters that have higher impact on the reproducibility that hold
true across applications (e.g. bandwidth level), which is interesting.

For validating our observations, we collected additional data for
two more applications in August 2019: CG [3] and miniAMR [74]
on the Catalyst cluster. Note that this data is being collected on the
system after two years of the original data collection process of
2017. As a result, various maintenance cycles, compiler, and operat-
ing system upgrades have been conducted between the initial data
collection and the newly collected data. Additionally, the routing
related issue that we detected earlier has been resolved. Figure 7
presents the influence path diagram results for these two new ap-
plications. For CG, we used class D. This application calculates the
conjugate gradient, and has characteristics that include irregular
memory access and communication. MiniAMR applies a stencil
calculation on a unit cube computational domain, and is primarily
communication bound. For miniAMR, the npx, npy, nyz options
were dependent on the number of tasks that we were running. We
set the number of time-steps to 200 and the stages per time step to
100. Total blocks were determined by the application itself through
weak scaling as 2048K, 4128K, and 8208K for the 1024-, 2048- and
4096-task experiments respectively. Even after two years, for the
two new applications, we observe that the bandwidth level parame-
ter (N) is still the most influential of all knobs. Another observation
that can be made is that tuning the task placement (L) parameter
next can be beneficial for both applications. Tuning power cap alone
for miniAMR or with task placement for CG does not contribute
new information. This is because neither of these applications is
compute-bound, and they see minimal impact based on power.
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We are able to claim that for the Catalyst cluster, in order to achieve
the most reproducible average execution time that is also the fastest,
a user with a new set of applications would have to only primarily
tune the bandwidth level provided to the application. If that is not
possible for the user, then they can achieve a desirable level of pre-
dictability in average execution time by only tuning the power cap
and the task placement specifications in most cases. The outcome of
the machine learning model can be integrated into a performance
auto-tuner to explore the search space in a smart manner. Our
observations will apply to other applications on the HPC system
described in this paper. We also expect our observations to apply to
other systems with the same knobs and the same micro-architecture.
Since most HPC systems collect similar data during acceptance test,
system administrators can apply our model to their collected dataset
to identify the impact of those knobs. Once the users and admin-
istrators understand the influence of their user- and system-level
parameters on optimality and reproducibility for a particular HPC
system, both parties can solely focus on tuning only the essential
ones. Based on our validation, we also note that regular updates
to such a dataset are necessary after major system upgrades for
determining configurations that lead to high desirability scores.

6 Related Work

Existing research has examined performance variation resulting
from network interference [8, 33, 35, 75], I/O congestion [2, 26]
and from power constrained scenarios that bring out chip-level
manufacturing differences [12, 19, 29, 34, 42, 56, 61, 71, 72]. A large
body of work has explored solutions for the aforementioned vari-
ation through adaptive resource management, including power-
aware schedulers [20-22, 25, 27, 36, 40, 52, 59, 60, 63, 67, 76-78],
and network-aware or I/O-aware schedulers [33, 41, 54, 55, 68, 79].
Additionally, existing research has also explored intelligent task
mapping and job placements to improve communication perfor-
mance [6, 7, 11, 28, 48, 58]. Predicting user estimates of the runtime
of their jobs so as to ensure that they not killed prematurely due to
underestimation has also been studied from the point of view of
noise and variation [23, 66]. Furthermore, several machine learning
techniques to predict application performance and detect anom-
alies for both power and network related variations have been
explored [5, 9, 16, 32, 43, 44, 70, 73], and the visualization com-
munity has come up with novel mechanisms to analyze network
traffic and performance data [10, 24, 31, 39, 45, 69]. However, all
the studies listed above have focused on a single objective such as
network traffic, or a single constraint such as power. There is little
research that explores the simultaneous impact of network, power,
and concurrency in real systems [50]. This limited research is either
focused on power and IO management [14, 64] or on temperature-
awareness for communication-intensive workloads [46, 47]. Our
work is the first-of-its-kind study to support a truly multi-objective
environment and to quantitatively evaluate various configurations
on a real system while understanding the influence scores of differ-
ent parameters. This research is a necessary precursor to developing
adaptive system software that involves management of different
heterogeneous hardware components and diverse resources such
as power, network and I/O.
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7 Conclusion

Limited research exists on understanding how various sources of
heterogeneity in computational environments, such as network
traffic, power limits, task placements, and interference from other
jobs, impact both the average execution times of applications and
their predictability from run to run. While a low average execution
time has always been a quantity that has been sought after, only
recently the need for performance reproducibility has been recog-
nized. There is a vast gap in understanding the trade-off between
performance optimality and reproducibility. To bridge that gap, this
paper takes two steps. First, based on measurements on a produc-
tion HPC system, this paper presents a metric called desirability
score that can be used to compare various system configurations
quantitatively. Second, we propose a novel machine learning tech-
nique based on graph signal analysis for determining the influence
of parameters on performance predictability. The second part of the
contribution is unique and is being proposed in order to reduce the
inordinate number of combinations of both user- and system-level
parameters that can be tuned in an HPC environment, while some
combinations can be hard to attain under certain constraint.

To the best of our knowledge, this paper is the first to provide
both a thorough analysis of a multi-objective dataset from the
optimality and reproducibility trade-off standpoint. Future work
involves collecting data across various other production clusters
and gaining a deeper understanding of parameter influence in multi-
objective environments and to develop finer-grained approaches
for the desirability score.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We ran five representative benchmarks: NAS LU, MG, FT (Class
D), and Kripke and CoMD. We used the 150 TFLOPS/s 324-node
catalyst cluster at Lawrence Livermore National Laboratory. Each
node in this cluster has two 12-core Intel Xeon CPUs and two HCA
network adapters. It is supported by an InfiniBand QDR network
with a two-level fat-tree topology, and has a layout of a total of 18
switches, with 18 nodes per switch.

For our dataset, we varied core count (16, 20, 24 cores per node),
task count (512, 1024, 2048, 4096 MPI ranks), power cap (64 W, 80
W, 115 W per socket), network QoS levels (combinations ranging
from service level 0 to 2), and application placement algorithms
(packed, spread and random assignment). All benchmarks are MPI-
based, compiled with Intel compiler 16.0.3 and MVAPICH 2.2. Each
representative application ran for at least 15 seconds at the fastest
configuration (we added iteration counts) to ensure that we have
reliable timing data. These have been described in detail in our
paper.

We used msr-safe (https://github.com/LLNL/msr-safe) and libmsr
(https://github.com/LLNL/libmsr) for power capping. Our machine
learning scripts and python visualization scripts will be made avail-
able along with our dataset.

ARTIFACT AVAILABILITY

Software Artifact Availability: All author-created software arti-
facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: All author-created data artifacts are
maintained in a public repository under an OSI-approved license.

Proprietary Artifacts: None of the associated artifacts, author-
created or otherwise, are proprietary.

List of URLs and/or DOIs where artifacts are available:

We will make our repository URL with data and scripts
— publicly available by November 2019 after release
— from LLNL. The link will be included in our final
— slides.

This will include our unique dataset, scripts for our
— novel machine learning model based on graph

— signal analysis, and scripts for our novel

— visualization diagram.

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Catalyst cluster at LLNL with 324
nodes. Each node in this cluster has two 12-core Intel Xeon CPUs
and two HCA network adapters. It is supported by an InfiniBand

QDR network with a two-level fat-tree topology, and has a layout
of a total of 18 switches, with 18 nodes per switch.

Operating systems and versions: TOSS Operating System (Tri-
lab’s version of Linux)

Compilers and versions: Intel Compiler 16.0.3

Applications and versions: NAS Parallel Benchmarks (MG, LU,
FT), Kripke, CoMD

Libraries and versions: MVAPICH 2.2
Key algorithms: N/A (we proposed a new ML algorithm)

Input datasets and versions: Class D for NAS. 240-480 for the
x,y,z inputs of CoMD. 122-256 for the zone inputs for Kripke. More
details in paper.

Paper Modifications: Note: Note that the collect.sh scripts prints
a different Intel compiler and complains about requiring superuser
permissions. When we ran these experiments, we used Intel Com-
piler 16.0.3 with MVAPICH 2.2. They were run in October 2017, so
the environment listed below isn’t a 100% accurate, but our results
are still valid and acceptable and we have given the details of all
the right environments in the paper.

Output from scripts that gathers execution environment informa-
tion.

We have attached the output of the requested

— collect.sh script as desired. This was collected
— at the time of writing this paper in April 2019,
— but our dataset was collected in October 2017.

\LMOD_FAMILY_COMPILER_VERSION=18.0.1
_ModuleTable@11_=ZXMvTGludXg6L3Vzci9zaGFyZS9tb2R1bGV
— maWxlcy9Db3J10i91c3Ivc2hhemUvbG1vZCIsbWIKL21vZHY |
—  SZWZpbGVzLONvcmUiLHo=
MANPATH=/g/g90/USER/src/spack/opt/spack/linux-rhel7-
— x86_64/gcc-4.9.3/1z4-1.8.1.2-p7grndyqisjn4t6qg4ki
icwykmx7ppumx/share/man:/g/g90/USER/src/spack/op |
t/spack/linux-rhel7-x86_64/gcc-4.9.3/python-2.7.
14-4agkfvsiakut5hgegek4psxq7i3wp5be/share/man: /u
sr/tce/packages/mvapich2/mvapich2-2.3-intel-18.0
.1/man:/usr/tce/packages/intel/intel-18.0.1/man/
common: /usr/tce/man:/usr/share/1lmod/1lmod/share/m
an:/usr/man:/usr/share/man:/usr/local/man:/usr/X
— 11R6/man: /usr/lib64/mvapich/default/man
HOSTNAME=catalyst160

GUESTFISH_INIT=\e[1;34m

L



_ModuleTable@03_=dmFwaWNoMj17WyJImbiJdPSIvdXNyL3RjZS9
— tb2R1bGVmaWxlcy9Db21waWx1ci9pbnR1bC8XOC4WL JEVDXZ |
— hcGljaDIvMi4zLmx1YSIsWyImdWxsTmFtZSJdPSJtdmFwaWN |
— OMi8yLjMiLFsibGOhZE9yZGVyI1@9MixwcmOwVD17fSxbInN
—  QYWNrRGVwdGgiXT@OxLFsic3RhdHVZI109ImF jdG12ZSIsWyJ
— 1c2VyTmFtZSJdPSJtdmFwaWNoMi8yL jMiLHOsWyJweS1jZmZ |
— pLTEuMS4yLWdjYy@@L jkuMy1mamtyeng11109e1siZm4iXTQ
« iL2cvZzkwlL3BhdGtpMS9zcmMve3BhY2sve2hhemUve3BhY2s
— vbW9kdWx1lcy9saW51eC1yaGVsNy140DZfNjQvcHktY2ZmaSo
—  XLJEuMilnY2MtNC45L jMtZmprcnp4NSIsWy JmdWxsTmFtZST |
— dPSJweS13jZmZpLTEUMS4yLWdjYy@oL jkuMyTmamtyeng1
SPACK_RO0T=/g/g90/USER/src/spack
INTEL_LICENSE_FILE=/usr/tce/packages/intel/intel-18.
— ©.1/compilers_and_libraries_2018.1.163/linux/Lic,
— enses/license.client.intel.lic
_ModuleTable@09_=WyJzdGFOdXMiXTOiYWNOaXZ1IixbInVzZXJ
— O0YW11I109InB5dGhvbi@yL jcuMTQtZ2NjLTQuOS4zLTRhZ2t
— mdnMiLHOsdGV4bG12ZT17WyJmbiJdPSIVdXNyL3RjZS9tb2R
— 1bGVmaWx1lcy9Db3J1L3R1eGxpdmUvMjAxNi5sdWEiLFsiZnV
— sbE5hbWUiXT0idGV4bG12ZS8yMDE2IixbImxvYWRPcmR1ciJ
— dPTMscHJvcFQ9e30sWyJzdGFja@R1cHRoI109MSxbINNOYXR |
— 1cyJdPSThY3RpdmUiLFsidXN1ck5hbWUiXT@idGV4bG12ZS8
—  YMDE2Iix9LHOsbXBhdGhBPXsil2cvZzkwlL 3BhdGtpMS9zcmM
— vc3BhY2svc2hhemUve3BhY2svbW9kdWx1cy9saW51eClyaGV
< sNy140DZfNjQiLCIvdXNyL3RjZS9tb2R1bGVmaWx1cyINUEK |
— VvbXZhcGljaDIvMi4zIiwil3Vzci9QY2UvbWOkdWx1Zmls
SHELL=/bin/bash

TERM=xterm-256color
__LMOD_REF_COUNT_MODULEPATH=/g/g90/USER/src/spack/sh
— are/spack/modules/linux-rhel7-x86_64:1;/usr/tce/
— modulefiles/MPI/mvapich2/2.3:1;/usr/tce/modulefi
— les/MPI/intel/18.0.1/mvapich2/2.3:1;/usr/tce/mod
— ulefiles/Compiler/intel/18.0.1:1;/collab/usr/glo,
— bal/tools/modulefiles/toss_3_x86_64_ib/Core:1;/u,
— sr/tce/modulefiles/Core:1;/usr/apps/modulefiles:
— 1;/usr/share/modulefiles/Linux:1;/usr/share/modu
— lefiles/Core:1;/usr/share/lmod/1lmod/modulefiles/
— Core:1

HISTSIZE=1000

WISECONFIGDIR=/usr/share/wise2/

CLICOLOR=1

SSH_CLIENT=76.102.78.63 56641 22
TMPDIR=/var/tmp/USER
MODULEPATH_ROOT=/usr/share/modulefiles
LMOD_SYSTEM_DEFAULT_MODULES=StdEnv
LDMS_XPRT_LIBPATH=/g/g9@/USER/Source/local_ldms/ldms
— .usr/lib/ovis-1ldms
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LIBRARY_PATH=/g/g90/USER/src/spack/opt/spack/linux-r
— hel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7grndyqisjn4t
6q4kiicwykmx7ppumx/1lib:/g/g90/USER/src/spack/opt
/spack/linux-rhel7-x86_64/gcc-4.9.3/py-functools
32-3.2.3-2-3xjeigigad6thua7ycs3j7ndcegeo7vb/1lib: |
/g/g90/USER/src/spack/opt/spack/linux-rhel7-x86_
64/gcc-4.9.3/py-jsonschema-2.5.1-73eyv2likbx1do7
s5rqt4ughvzga2azq/lib:/g/g90/USER/src/spack/opt/
spack/linux-rhel7-x86_64/gcc-4.9.3/py-pyyaml-3.1
3-nmgcaksh22c5p251wwwhgtouz6rg4uud/lib:/g/g90/UsS |
ER/src/spack/opt/spack/linux-rhel7-x86_64/gcc-4.
9.3/py-six-1.10.0-z6ym6ink72tpqgpaw3mnr7xxzj7ci2
5d/1ib:/g/g90/USER/src/spack/opt/spack/linux-rhe
17-x86_64/gcc-4.9.3/py-pycparser-2.17-eifsucgodw
7fjiiyfbz4gyj5wsmytkd2/1ib:/g/g90/USER/src/spack
/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-cffi-
1.1.2-fjkrzx5dyljwlikbjlgv7z3ibnzlc5fw/1ib:/g/g9
0/USER/src/spack/opt/spack/linux-rhel7-x86_64/gc
c-4.9.3/python-2.7.14-4agkfvsiakut5hgegek4psxq7i
— 3wp5be/lib

LMOD_PKG=/usr/share/1mod/1mod

QTDIR=/usr/1ib64/qt-3.3
QTINC=/usr/1ib64/qt-3.3/include

LMOD_VERSION=7.8.16

SSH_TTY=/dev/pts/6

LC_ALL=C
__LMOD_REF_COUNT_LOADEDMODULES=intel/18.0.1:1;mvapic
h2/2.3:1;texlive/2016:1;StdEnv:1;python-2.7.14-g
cc-4.9.3-4agkfvs:1;py-cffi-1.1.2-gcc-4.9.3-fjkrz,
x5:1;py-pycparser-2.17-gcc-4.9.3-eifsucg:1;py-si
x-1.10.0-gcc-4.9.3-z6ymb6in:1;py-pyyaml-3.13-gcc-
4.9.3-nmgcaks: 1;py-jsonschema-2.5.1-gcc-4.9.3-73
eyv2l:1;py-functools32-3.2.3-2-gcc-4.9.3-3xjeigi
— :1;1z4-1.8.1.2-gcc-4.9.3-p7grndy: 1
SPACK_SHELL=bash

__LMOD_REF_COUNT_CMAKE _PREFIX_PATH=/g/g90/USER/src/s
— pack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/1z4-
1.8.1.2-p7grndyqisjn4t6q4kiicwykmx7ppumx:1;/g/g9
0/USER/src/spack/opt/spack/linux-rhel7-x86_64/gc
c-4.9.3/py-functools32-3.2.3-2-3xjeigiqad6thua’7y
cs3j7ndcegeo7vb:1;/g/g90/USER/src/spack/opt/spac
k/1linux-rhel7-x86_64/gcc-4.9.3/py-jsonschema-2.5
.1-73eyv2likbxldo7s5rqt4ughvzga2azq: 1;/g/g90/USE |
R/src/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9
.3/py-pyyaml-3.13-nmgcaksh22c5p251wwwhgtouzérgdu
ud:1;/g/g90/USER/src/spack/opt/spack/linux-rhel7
-x86_64/gcc-4.9.3/py-six-1.10.0-z6ym6ink72tpagpaw
3mnr7xxzj7ci25d:1;/g/g90/USER/src/spack/opt/spac
k/1linux-rhel7-x86_64/gcc-4.9.3/py-pycparser-2.17
-eifsucgo4w7fjiiyfbz4gyjSwsmytkd2:1;/g/g90/USER/s
rc/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/
py-cffi-1.1.2-fjkrzx5dyljwlikbjlgv7z3ibnzlc5fw:1
;/8/890/USER/src/spack/opt/spack/linux-rhel7-x86
_64/gcc-4.9.3/python-2.7.14-4agkfvsiakut5hgegek4
psxq7i3wp5be: 1

L A

rretrr!

rrecrrrrrrr g
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ModuleTable@0@7_=c3BhY2svc2hhcmUvc3BhY2svbW9kdWx1cy9

saW51eC1yaGVsNy140DZfNjQvcHktcHI5YW1SLTMUMTMtZ2N |
jLTQuOS4zLW5tZ2Nha3MiLFsiZnVsbE5hbWUiXT@icHktcHI |
5YW1sLTMuMTMtZ2NjLTQuOS4zLW5tZ2Nha3MiLFsibGOhZE9
yZGVyI1090Sxwecm9IwVD17fSxbInNOYWNrRGVwdGgiXTOWLFs |
1c3RhdHVZI1Q9ImFjdG12ZSIsWyJ1c2VyTmFtZSJdPSIweST
weX1hbWwtMy4xMy1nY2MtNC45L jMtbm1nY2FrcyIsfSxbInB
5LXNpeCOxLEWL jAtZ2NjLTQuUOS4zLX02eWd2aW4iXT17WyJ |
mbiJdPSIvZy9nOTAvcGFOa2kxL3NyYy9zcGF jay9zaGFyZS9
zcGFjay9tb2R1bGVzL2xpbnV4LXJoZWw3LXg4N182NCOweST |
zaXgtMS4xMC4wLWdjYy@oL jkuMy16Nn1tNmlulixbImZ1

USER=USER
LS_COLORS=rs=0:di=38;5;27:1n=38;5;51:mh=44;38;5;15:p

A

)

—

1=40;38;5;11:50=38;5;13:do=38;5;5:bd=48;5;232; 38
;5;11:¢cd=48;5;232;38;5;3:0r=48;5;232;38;5;9:mi=0
5;48;5;232;38;5;15:5u=48;5;196;38;5;15:5g=48;5; 1
1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1
6:0w=48;5;10;38;5;21:st=48;5;21;38;5;15:ex=38;5; |
34:x.tar=38;5;9:%.tgz=38;5;9:%.arc=38;5;9:x.arj=,
38;5;9:%.taz=38;5;9:%.1ha=38;5;9:*.124=38;5;9:%*. ,
1zh=38;5;9:%.1zma=38;5;9:%.t1z=38;5;9:*. txz=38;5,
;9:%.120=38;5;9:%.t72=38;5;9:*%.21ip=38;5;9:%.2=38
;5;9:%.7=38;5;9:%.dz=38;5;9:%.gz=38;5;9:%.1rz=38
5;9:%.12=38;5;9:%.120=38;5;9:%.x2=38;5;9:%.bz2=),
38;5;9:%.bz=38;5;9:%.tbz=38;5;9:%.tbz2=38;5;9:%. ,
tz=38;5;9:%.deb=38;5;9:x.rpm=38;5;9:*. jar=38;5;9
:x.war=38;5;9:%.ear=38;5;9:*%.sar=38;5;9:x.rar=38
;5;9:%.al12=38;5;9:%.ace=38;5;9:%.200=38;5;9:*.cp
10=38;5;9:%.72=38;5;9:%.rz=38;5;9:*.cab=38;5;9: %
.Jpg=38;5;13:%.jpeg=38;5;13:%.gif=38;5;13:%.bmp=,
38;5;13:%.pbm=38;5;13:%.pgm=38;5;13:%.ppm=38;5;1,
3:%.tga=38;5;13:%.xbm=38;5;13:%.xpm=38;5;13:%.ti,
f=38;5;13:%.tiff=38;5;13:%.png=38;5;13:%.svg=38; |
5;13:%.svgz=38;5;13:%.mng=38;5;13:%.pcx=38;5;13: |
*.mov=38;5;13:*.mpg=38;5;13:%.mpeg=38;5;13:%.m2v
=38;5;13:x.mkv=38;5;13:x.webm=38;5;13:%.0gm=38;5
;13:%.mp4=38;5;13:%.m4v=38;5;13:%x.mp4v=38;5;13:%
.vob=38;5;13:%.qt=38;5;13:%.nuv=38;5;13:%.wmv=38
;5;13:%.asf=38;5;13:%.rm=38;5;13:x.rmvb=38;5;13:
*.f1c=38;5;13:%.avi=38;5;13:%.f1i=38;5;13:%.flv=
38;5;13:%.g1=38;5;13:%.d1=38;5;13:x.xcf=38;5;13:
*.xwd=38;5;13:%.yuv=38;5;13:%.cgm=38;5;13:x.emf=
38;5;13:%.axv=38;5;13:%.anx=38;5;13:*.0gv=38;5;1
3:%.0gx=38;5;13:%.aac=38;5;45:%.au=38;5;45:x.fla,
€=38;5;45:%.mid=38;5;45:%x.midi=38;5;45:%.mka=38; |
5;45:%.mp3=38;5;45:*.mpc=38;5;45:%.0gg=38;5;45:%
.ra=38;5;45:*%.wav=38;5;45:%.axa=38;5;45:%.0ga=38
;5;45:%.spx=38;5;45:x.xspf=38;5;45:

LMOD_sys=Linux

LD_LIBRARY_PATH=/g/g90/USER/src/spack/opt/spack/1linu

—

!

L

x-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7grndyqisj
n4t6q4kiicwykmx7ppumx/1lib:/g/g90/USER/src/spack/
opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-functo
0ls32-3.2.3-2-3xjeigigad6thua7ycs3j7ndcegeo7vb/1
ib:/g/g%90/USER/src/spack/opt/spack/linux-rhel7-x
86_64/gcc-4.9.3/py-jsonschema-2.5.1-73eyv21likbx1
do7s5rqt4ughvzga2azq/lib:/g/g90/USER/src/spack/o
pt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-pyyaml-
3.13-nmgcaksh22c5p251wwwhgtouz6rgduud/lib: /g/g90 |
/USER/src/spack/opt/spack/linux-rhel7-x86_64/gcc
-4.9.3/py-six-1.10.0-z6ym6ink72tpqqpaw3mnr7xxzj7c
i25d/1ib:/g/g90/USER/src/spack/opt/spack/linux-r
hel7-x86_64/gcc-4.9.3/py-pycparser-2.17-eifsucgo
4w7fjiiyfbz4gyj5wsmytkd2/1ib:/g/g90/USER/src/spa
ck/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-cff
i-1.1.2-fjkrzx5dyljwlikbjlgv7z3ibnzlc5fw/1ib:/g/
g90/USER/src/spack/opt/spack/linux-rhel7-x86_64/
gcc-4.9.3/python-2.7.14-4agkfvsiakut5hgegek4psxq
7i3wp5be/lib:/usr/tce/packages/mvapich2/mvapich?
-2.3-intel-18.0.1/1ib:/usr/tce/packages/intel/int
el-18.0.1/1ib/intel64:/g/g90/USER/src/libmsr_ins
tall/lib:/usr/lib:/usr/1ib64:/g/g90/USER/Source/
local_ldms/1ib64:/g/g90/USER/Source/local_ldms/1
dms.usr/lib/ovis-1dms

_ModuleTable@10_=ZXMvTVBJL21udGVsLzE4L jAuMS9tdmFwaWN |

L A A

—

oMi8yL jMiLCIVdXNyL3RjZS9tb2R1bGVmaWx1cy9Db21waWx |
1ci9pbnR1bC8x0C4wLJEILCIVY29sbGFil3Vzci9nbGiYWw
vdGIvbHMVbWIkdWx1ZmlsZXMvdG9zc18zX3g4N182NFIpYi9
Db3J1Iiwil3Vzci9@Y2UvbWIkdWx1ZmlsZXMvQ29yZSIsIi9
1c3IvYXBwecy9tb2R1bGVmaWx1lcyIsIi91c3Ive2hhemUvbW9 |
kdWx1Zml1sZXMvTGludXgil CIVdXNyL3NoYXJ1L21vZHVSZWZ |
pbGVzLONvemUiLCIvdXNyL3NoYXJ1L2xth2QvbG1vZCItb2R |
1bGVmaWx1cy9Db3J1Iix9LFsic31zdGVtQmFzZUTQQVRII1O
9Ii91¢c3IvdGN1L21vZHVSZWZpbGVzLONvemU6L3VzciShcHB
zL21vZHVsZWZpbGVz0i91c3Ivc2hhemUvbWokdWx1Zmls

ENV=/g/g90/USER/ .bashrc
PFTP_CONFIG_FILENAME=/etc/pftp_config

HOST_GRP=11inux
_ModuleTable@04_=IixbImxvYWRPcmR1ciJdPTYscHJvcFQ9e30

L

sWyJzdGF ja@R1cHRoI1@9MCxbInNOYXR1cyJdPSIhY3RpdmU
iLFsidXN1ck5hbWUiXT@icHktY2ZmaSOxLJEuMi1nY2MtNC4
5L jMtZmprcnp4NSIsfSxbInB5LWZ1bmNOb29sczMyL TMuMi4 |
zLTItZ2NjLTQuOS4zLTN4amVpZ2kiXT17WyJmbiJdPSIVZy9
nOTAvcGF@a2kxL3NyYy9zcGF jay9zaGFyZS9zcGF jay9tb2R |
1bGVzL2xpbnV4LXJoZWw3LXg4N182NCOweST1mdW5jdGIVbHM |
zMi0zL jIuMy@yLWdjYy@oL jkuMy@zeGplaWdpIixbImZ1bGx |
OYW11I109InB5LWZ1bmN@Ob29sczMyLTMuMi4zLTItZ2NjLTQ,
u0S4zLTN4amVpZ2kilFsibGOhZE9yZGVyI1@9IMTEscHIVCFQ
9e30sWyJzdGF ja@R1cHRoI1@9MCxbINNOYXR1cyJdPSJTh

CPATH /g/g90/USER/src/spack/opt/spack/linux-rhel7-x8

—

—

—
—

6_64/gcc-4.9.3/1z4-1.8.1.2-p7grndyqisjn4t6gdkiic
wykmx7ppumx/include:/g/g90/USER/src/spack/opt/sp
ack/linux-rhel7-x86_64/gcc-4.9.3/python-2.7.14-4
agkfvsiakut5hgegek4psxq7i3wp5be/include



__LMOD_REF_COUNT__LMFILES_=/usr/tce/modulefiles/Core
«— /intel/18.0.1.1ua:1;/usr/tce/modulefiles/Compile
— r/intel/18.0.1/mvapich2/2.3.1ua:1;/usr/tce/modul
— efiles/Core/texlive/2016.1lua:1;/usr/tce/modulefi
— les/Core/StdEnv.lua:1;/g/g9@/USER/src/spack/shar
— e/spack/modules/linux-rhel7-x86_64/python-2.7.14,
— -gcc-4.9.3-4agkfvs:1;/g/g90/USER/src/spack/share/
— spack/modules/linux-rhel7-x86_64/py-cffi-1.1.2-g,
cc-4.9.3-fjkrzx5:1;/g/g90/USER/src/spack/share/s |
pack/modules/linux-rhel7-x86_64/py-pycparser-2.1
7-gcc-4.9.3-eifsucg:1;/g/g90/USER/src/spack/shar
e/spack/modules/linux-rhel7-x86_64/py-six-1.10.0
-gcc-4.9.3-z6ym6in:1;/g/g90/USER/src/spack/share/ |
spack/modules/linux-rhel7-x86_64/py-pyyaml-3.13-
gcc-4.9.3-nmgcaks:1;/g/g90/USER/src/spack/share/
spack/modules/linux-rhel7-x86_64/py-jsonschema-2
.5.1-gcc-4.9.3-73eyv21:1;/g/g90/USER/src/spack/s
hare/spack/modules/linux-rhel7-x86_64/py-functoo
— 1s832-3.2.3-2-gcc-4.9.3-3xjeigi:1;/g/g90/USER/src
— /spack/share/spack/modules/linux-rhel7-x86_64/1z
— 4-1.8.1.2-gcc-4.9.3-p7grndy:1
GUESTFISH_PS1=\[\e[1;32m\1><fs>\[\e[0;31m\]
LMOD_PREPEND_BLOCK=normal

LMOD_FAMILY_MPI_VERSION=2.3
LSCOLORS=ExFxBxDxCxegedabagacad
PATH=/g/g90/USER/Source/local_ldms/ldms.usr/sbin/:/g
— /g90/USER/src/spack/opt/spack/linux-rhel7-x86_64
/gcc-4.9.3/1z4-1.8.1.2-p7grndyqisjn4t6g4kiicwykm
x7ppumx/bin:/g/g90/USER/src/spack/opt/spack/linu
x-rhel7-x86_64/gcc-4.9.3/py-jsonschema-2.5.1-73¢
yv2likbxldo7s5rqt4ughvzga2azq/bin: /g/g9@/USER/sr
c/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/p
ython-2.7.14-4agkfvsiakut5hgegek4psxq7i3wp5be/bi
n:/g/g90/USER/src/spack/bin: /usr/tce/packages/te
xlive/texlive-2016/2016/bin/x86_64-1inux:/usr/tc
e/packages/mvapich2/mvapich2-2.3-intel-18.0.1/bi
n:/usr/tce/packages/intel/intel-18.0.1/bin:/usr/
— tce/bin:/usr/1ib64/qt-3.3/bin:/usr/local/bin:/us
— r/bin:/usr/local/sbin:/usr/sbin
MAIL=/var/spool/mail/USER
_ModuleTable@@1_=X@1vZHVsZVRhYmx1Xz17WyJNVHZ1cnNpb24
— 1XT@zLFsiY19yZWJ1aWxkVG1tZSJdPWZhbHNILFsiY19zaG9
—  ydFRpbWUiXTT1mYWxzZSxkZXB@aFQ9e30sZmFtaWx5PXtbImN
vbXBpbGVyI109ImludGVsIixbImlwaSJdPSItdmFwaWNoMiI
sfSxtVD17U3RKRW52PXtbImZuI109Ii91c3IvdGNIL21vZHY
SZWZpbGYzLONvemUVU3RKRWS2Lmx 1YSIsWy JmdWxsTmFtZSJ |
dPSJTAGRFbnYiLFsibG9hZE9yZGVyI1@9NCxwecmOwVD17fSx |
bINNOYWNrRGVwdGgiXTOwLFsic3RhdHVZI1@9ImFjdG12ZST
sWyJ1c2VyTmFtZSJdPSITAGRFbnYiLHOsaW50ZWw9el1sizZm4
iXT@iL3Vzci9@Y2UvbW9IkdWx1ZmlsZXMvQ29yZS9pbnR1bC8
—  XOC4wLjEubHVhIixbImZ1bGx0YW11I109ImludGVsLzE4
LCSCHEDCLUSTER=catalyst

_=/usr/bin/env
LDMSD_PLUGIN_LIBPATH=/g/g90/USER/Source/local _ldms/1
— dms.usr/lib/ovis-1ldms

LMOD_SETTARG_CMD=:

L

!

L

)
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PWD=/g/g90/USER

INPUTRC=/etc/inputrc
_LMFILES_=/usr/tce/modulefiles/Core/intel/18.0.1.1lua
:/usr/tce/modulefiles/Compiler/intel/18.0.1/mvap
ich2/2.3.1ua:/usr/tce/modulefiles/Core/texlive/2
016.1ua:/usr/tce/modulefiles/Core/StdEnv.lua:/g/
g90/USER/src/spack/share/spack/modules/linux-rhe
17-x86_64/python-2.7.14-gcc-4.9.3-4agkfvs:/g/g90
/USER/src/spack/share/spack/modules/linux-rhel7-
x86_64/py-cffi-1.1.2-gcc-4.9.3-fjkrzx5:/g/g90/US |
ER/src/spack/share/spack/modules/linux-rhel7-x86
_64/py-pycparser-2.17-gcc-4.9.3-eifsucg:/g/g90/U
SER/src/spack/share/spack/modules/linux-rhel7-x8
6_64/py-six-1.10.0-gcc-4.9.3-z6ym6in:/g/g90/USER |
/src/spack/share/spack/modules/linux-rhel7-x86_6
4/py-pyyaml-3.13-gcc-4.9.3-nmgcaks:/g/g90/USER/s |
rc/spack/share/spack/modules/linux-rhel7-x86_64/
py-jsonschema-2.5.1-gcc-4.9.3-73eyv21:/g/g%0/USE |
R/src/spack/share/spack/modules/linux-rhel7-x86_
64/py-functools32-3.2.3-2-gcc-4.9.3-3xjeigi:/g/g
90/USER/src/spack/share/spack/modules/linux-rhel
— 7-x86_64/1z4-1.8.1.2-gcc-4.9.3-p7grndy
LDMSD_SOCKPATH=/g/g9@/USER/Source/local_ldms/run/ldm
- sd

EDITOR=/bin/vi

LANG=en_US.UTF-8
__LLMOD_REF_COUNT_PYTHONPATH=/g/g90/USER/src/spack/op
t/spack/linux-rhel7-x86_64/gcc-4.9.3/py-functool
$32-3.2.3-2-3xjeigiqad6thua7ycs3j7ndcegeo7vb/1ib
/python2.7/site-packages:1;/g/g90/USER/src/spack
/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-jsons
chema-2.5.1-73eyv2likbx1ldo7s5rqt4ughvzga2azq/lib
/python2.7/site-packages:1;/g/g90/USER/src/spack
/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-pyyam
1-3.13-nmgcaksh22c5p251wwwhgtouz6rg4uud/lib/pyth
on2.7/site-packages:1;/g/g90/USER/src/spack/opt/
spack/linux-rhel7-x86_64/gcc-4.9.3/py-six-1.10.0
-z6ym6ink72tpggpaw3mnr7xxzj7ci25d/1ib/python2.7/s
ite-packages:1;/g/g90/USER/src/spack/opt/spack/1
inux-rhel7-x86_64/gcc-4.9.3/py-pycparser-2.17-ei
fsucgo4w7fjiiyfbz4gyjswsmytkd2/1ib/python2.7/sit
e-packages:1;/g/g90/USER/src/spack/opt/spack/lin
ux-rhel7-x86_64/gcc-4.9.3/py-cffi-1.1.2-fjkrzx5d
yljwlikbjlgv7z3ibnzlc5fw/1lib/python2.7/site-pack
— ages:1
MODULEPATH=/g/g90/USER/src/spack/share/spack/modules
/linux-rhel7-x86_64:/usr/tce/modulefiles/MPI/mva
pich2/2.3:/usr/tce/modulefiles/MPI/intel/18.0.1/
mvapich2/2.3:/usr/tce/modulefiles/Compiler/intel
/18.0.1:/collab/usr/global/tools/modulefiles/tos
s_3_x86_64_ib/Core:/usr/tce/modulefiles/Core:/us
r/apps/modulefiles:/usr/share/modulefiles/Linux:
/usr/share/modulefiles/Core:/usr/share/lmod/1mod
— /modulefiles/Core

GUESTFISH_OUTPUT=\e[Om

KDEDIRS=/usr

L

L L

!
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LOADEDMODULES=intel/18.0.1:mvapich2/2.3:texlive/2016
« :StdEnv:python-2.7.14-gcc-4.9.3-4agkfvs:py-cffi-,
— 1.1.2-gcc-4.9.3-fjkrzx5:py-pycparser-2.17-gcc-4.
— 9.3-eifsucg:py-six-1.10.0-gcc-4.9.3-z6ym6in:py-p,
— yyaml-3.13-gcc-4.9.3-nmgcaks:py-jsonschema-2.5.1,
— -gcc-4.9.3-73eyv21:py-functools32-3.2.3-2-gcc-4.9,
— .3-3xjeigi:1z4-1.8.1.2-gcc-4.9.3-p7grndy
_ModuleTable_Sz_=11
LMOD_CMD=/usr/share/1mod/1lmod/1libexec/1mod
_ModuleTable@05_=Y3RpdmUiLFsidXN1ck5hbWUiXT@icHktZnV
< UY3Rvb2xzMzItMy4yL jMtMi1nY2MtNC45L jMtM3hqZW1lnasST
— sfSxbInB5LWpzb25zY2h1bWEtMi41LjEtZ2NjLTQUOS4zLTc
—  zZX12MmwiXT17WyJmbiJdPSIvZy9nOTAvcGF@a2kxL3NyYy9
— zcGFjay9zaGFyZS9zcGF jay9tb2R1bGVzL2xpbnV4LXJoZWw |
< 3LXg4N182NC9weS1qc29uc2NoZWThLTIuNS4xLWdjYyooL jk |
— UMy@3M2V5djJsIixbImZ1bGx0YW11I109InB5LWpzb252zY2h
— 1bWEtMi41LJEtZ2NjLTQuOS4zLTczZX12MmwilLFsibGOhZE9
— yZGVyI109MTAscHIvcFQ9e3@sWyJzdGF ja@R1cHROI1Q9MCx
— bInN@YXR1cyJdPSIhY3RpdmUiLFsidXN1ck5hbWUiXT@icHk
— tanNvbnNjaGVtYSQyL jUuMSTnY2MtNC45L jMtNzNleXYy
KRB5CCNAME=FILE:/tmp/krb5cc_36985_pET1fNA
HISTCONTROL=ignoredups

ENVIRONMENT=INTERACTIVE
SSH_ASKPASS=/usr/libexec/openssh/gnome-ssh-askpass
LDMSD_PIDFILE=/g/g90/USER/Source/local_ldms/run/ldms
— d.pid

HOME=/g/g9@/USER

SHLVL=2
__LMOD_REF_COUNT_PATH=/g/g90/USER/src/spack/opt/spac
— k/linux-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7grn,
— dyqisjn4t6g4kiicwykmx7ppumx/bin:1;/g/g90/USER/sr
— c/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/p,
— y-jsonschema-2.5.1-73eyv2likbxldo7s5rqt4ughvzga?
— azq/bin:1;/g/g90/USER/src/spack/opt/spack/linux-
— rhel7-x86_64/gcc-4.9.3/python-2.7.14-4agkfvsiaku
— t5hgegek4psxq7i3wp5be/bin:1;/g/g90/USER/src/spac
— k/bin:1;/usr/tce/packages/texlive/texlive-2016/2,
— 016/bin/x86_64-1inux:1;/usr/tce/packages/mvapich,
— 2/mvapich2-2.3-intel-18.0.1/bin:1;/usr/tce/packa,
— ges/intel/intel-18.0.1/bin:1;/usr/tce/bin:1;/usr
— /1ib64/qt-3.3/bin:1;/usr/local/bin:1;/usr/bin:1;
— /Jusr/local/sbin:1;/usr/sbin:1
__LMOD_REF_COUNT_CPATH=/g/g90/USER/src/spack/opt/spa
— ck/linux-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7gr,
— ndyqisjn4t6qg4kiicwykmx7ppumx/include:1;/g/g90@/US
— ER/src/spack/opt/spack/linux-rhel7-x86_64/gcc-4.
— 9.3/python-2.7.14-4agkfvsiakut5hgegek4psxq7i3wp5
— be/include:1

_ModuleTable@02_=L jAuMSIsWyJsb2FkT3JkZXIiXT@xLHByb3B

UPXt9LFsic3RhY2tEZXBOaCJdPTEsWyJzdGF@AXMiXTOiYWN |
0aXZ1IixbInVzZXJOYW11I109ImludGVsIix9LFsibHo@LTE
uOC4xLjItZ2NjLTQuOS4zLXA3Z3JuZHKiXT17WyJImbiJdPST |
VZy9nOTAvcGFa2kxL3NyYy9zcGF jay9zaGFyZS9zcGF jay9 |
tb2R1bGVzL2xpbnV4LXJ0oZWw3LXg4N182NCIse jOQtMS44L JE |
uMi1nY2MtNC45L jMtcDdncm5keSIsWy ImdWxsTmFtZSIdPST |
sejQtMS44LJEUMiTnY2MtNC45L jMtcDdnemSkeSIsWy Jsb2F |
kT3JKZXIiXTOxMixwcm9wVD17fSxbInNOYWNrRGVwdGgiXTa
WLFsic3RhdHVZI1Q9ImFjdG12ZSIsWyJ1c2VyTmFtZSIdPST
sejQtMS44L jEuMiTnY2MtNC45L jMtcDdncm5keSIsfSxt
BASH _ENV=/usr/share/1lmod/1lmod/init/bash
_ModuleTable@08_=bGx0YW11I109InB5LXNpeCOXL jEWL jAtZ2N |
jLTQuOS4zLX02eW02aW4iLFsibGOhZE9yZGVyI1090Cxwem9 |
wVD17fSxbInNOYWNrRGVwdGgiXTOWLFsic3RhdHVZI1@9ImF |
JdG12ZSIsWyJ1c2VyTmFtZSJdPSIweS1zaXgtMS4xMCAwLWd |
jYy@oL jkuMy16Nn1tNmluIix9LFsicH10aGOuLTIuNy4xNC1
nY2MtNC45L jMtNGFna2Z2cyJdPXtbImZuI1e9IionL2c5MCY
wYXRraTEvc3JjL3NwWYWNrL3NoYXJ1L3NwYWNrL21vZHVSZXM |
vbGludXgtcmhlbDcteDg2XzYOL3B5dGhvbidyL jcuMTQtZ2N |
jLTQuOS4zLTRhZ2tmdnMiLFsiZnVsbE5hbWUiXT@icH10aG9
ULTIuNy4xNCTnY2MtNC45L jMtNGFna2Z2cyIsWyJsb2FkT3T
—  KkZXIiXT@1LHByb3BUPXt9LFsic3RhY2tEZXBOaCJdPTAs
LOGNAME=USER

LMOD_arch=x86_64
PYTHONPATH=/g/g9@/USER/src/spack/opt/spack/linux-rhe
— 17-x86_64/gcc-4.9.3/py-functools32-3.2.3-2-3xjei
gigad6thua7ycs3j7ndcegeo7vb/1lib/python2.7/site-p
ackages:/g/g90/USER/src/spack/opt/spack/linux-rh
el7-x86_64/gcc-4.9.3/py-jsonschema-2.5.1-73eyv2l
ikbxldo7s5rqt4ughvzga2azq/lib/python2.7/site-pac
kages:/g/g90/USER/src/spack/opt/spack/linux-rhel
7-x86_64/gcc-4.9.3/py-pyyaml-3.13-nmgcaksh22c5p2
5lwwwhgtouz6rg4uu4/lib/python2.7/site-packages:/
g/g90/USER/src/spack/opt/spack/linux-rhel7-x86_6
4/gcc-4.9.3/py-six-1.10.0-z6ym6ink72tpqgpaw3mnr7
xxzj7¢i25d/1ib/python2.7/site-packages:/g/g90/US
ER/src/spack/opt/spack/linux-rhel7-x86_64/gcc-4.
9.3/py-pycparser-2.17-eifsucgo4w7fjiiyfbz4gyjsws
mytkd2/1ib/python2.7/site-packages:/g/g90/USER/s |
rc/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/
py-cffi-1.1.2-fjkrzx5dyljwlikbjlgv7z3ibnzlc5fw/1
— ib/python2.7/site-packages

CVS_RSH=ssh

QTLIB=/usr/1ib64/qt-3.3/1ib
SSH_CONNECTION=76.102.78.63 56641 134.9.50.63 22
XDG_DATA_DIRS=/g/g90/USER/.local/share/flatpak/expor
— ts/share:/var/lib/flatpak/exports/share:/usr/loc
— al/share:/usr/share

SYS_TYPE=toss_3_x86_64_ib
MODULESHOME=/usr/share/1mod/1mod

L

L

L



__LMOD_REF_COUNT_LIBRARY_PATH=/g/g90/USER/src/spack/
— opt/spack/linux-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1,
— .2-p7grndyqisjn4t6q4kiicwykmx7ppumx/1lib:1;/g/g90,
— /USER/src/spack/opt/spack/linux-rhel7-x86_64/gcc
— -4.9.3/py-functools32-3.2.3-2-3xjeigiqad6thua7ycs
— 3j7ndcegeo7vb/lib:1;/g/g90/USER/src/spack/opt/sp
— ack/linux-rhel7-x86_64/gcc-4.9.3/py-jsonschema-2,
— .5.1-73eyv2likbxldo7s5rqt4ughvzga2azq/lib:1;/g/g,
90/USER/src/spack/opt/spack/linux-rhel7-x86_64/g
cc-4.9.3/py-pyyaml-3.13-nmgcaksh22c5p251lwwwhgtou
z6rg4uu4/lib:1;/g/g90/USER/src/spack/opt/spack/1
inux-rhel7-x86_64/gcc-4.9.3/py-six-1.10.0-z6ym61
nk72tpqgpaw3mnr7xxzj7ci25d/1ib:1;/g/g90/USER/src
/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py
-pycparser-2.17-eifsucgodw7fjiiyfbz4gyjSwsmytkd2/ |
lib:1;/g/g90/USER/src/spack/opt/spack/linux-rhel
7-x86_64/gcc-4.9.3/py-cffi-1.1.2-fjkrzx5dyljwlik
bjlgv7z3ibnzlc5fw/1ib:1;/g/g90/USER/src/spack/op
— t/spack/linux-rhel7-x86_64/gcc-4.9.3/python-2.7.,
— 14-4agkfvsiakut5hgegek4psxq7i3wp5be/lib:1
LDMS_AUTH_FILE=/g/g90/USER/mysecret
LESSOPEN=] | /usr/bin/lesspipe.sh %s
LMOD_SETTARG_FULL_SUPPORT=no
__LMOD_REF_COUNT_LD_LIBRARY_PATH=/g/g9@/USER/src/spa
— ck/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/1z4-1.
— 8.1.2-p7grndyqisjn4t6q4kiicwykmx7ppumx/1lib:1;/g/,
— g90/USER/src/spack/opt/spack/linux-rhel7-x86_64/
— gcc-4.9.3/py-functools32-3.2.3-2-3xjeigiqad6thua,
7ycs3j7ndcegeo7vb/1ib:1;/g/g90/USER/src/spack/op
t/spack/linux-rhel7-x86_64/gcc-4.9.3/py-jsonsche
— ma-2.5.1-73eyv2likbxldo7s5rqt4ughvzga2azq/lib:1;
— /g/g9@/USER/src/spack/opt/spack/linux-rhel7-x86_
— 64/gcc-4.9.3/py-pyyaml-3.13-nmgcaksh22c5p251wwwh |
— gtouz6rg4uud/lib:1;/g/g90/USER/src/spack/opt/spa
— ck/1linux-rhel7-x86_64/gcc-4.9.3/py-six-1.10.0-z6,
— ym6ink72tpggpaw3mnr7xxzj7¢i25d/1ib:1;/g/g90/USER
— /src/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.
— 3/py-pycparser-2.17-eifsucgo4w7fjiiyfbz4gyj5wsmy
— tkd2/1ib:1;/g/g90/USER/src/spack/opt/spack/linux
— -rhel7-x86_64/gcc-4.9.3/py-cffi-1.1.2-fjkrzx5dylj,
— wlikbjlgv7z3ibnzlc5fw/1lib:1;/g/g90/USER/src/spac
— k/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/python-,
— 2.7.14-4agkfvsiakut5hgegek4psxq7i3wp5be/lib:1;/u,
— sr/tce/packages/mvapich2/mvapich2-2.3-intel-18.9,
«— .1/1ib:1;/usr/tce/packages/intel/intel-18.0.1/1i,
— b/intel64:1
PKG_CONFIG_PATH=/g/g90/USER/src/spack/opt/spack/linu
— x-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7grndyqisj
— n4t6gakiicwykmx7ppumx/lib/pkgconfig:/g/g9@/USER/
— src/spack/opt/spack/linux-rhel7-x86_64/gcc-4.9.3,
— /python-2.7.14-4agkfvsiakut5hgegek4psxq7i3wp5be/ |
— lib/pkgconfig

LMOD_FULL_SETTARG_SUPPORT=no
LMOD_FAMILY_COMPILER=intel
__LMOD_REF_COUNT_INTEL_LICENSE_FILE=/usr/tce/package
— s/intel/intel-18.0.1/compilers_and_libraries_201
— 8.1.163/linux/Licenses/license.client.intel.lic:1

L
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CMAKE_PREFIX_PATH=/g/g90/USER/src/spack/opt/spack/11i
— nux-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7grndyqi
sjn4t6qg4kiicwykmx7ppumx:/g/g90/USER/src/spack/op
t/spack/linux-rhel7-x86_64/gcc-4.9.3/py-functool
$32-3.2.3-2-3xjeigiqgad6thua7ycs3j7ndcegeo7vb:/g/
g90/USER/src/spack/opt/spack/linux-rhel7-x86_64/
gcc-4.9.3/py-jsonschema-2.5.1-73eyv21likbx1do7s5r
qt4ughvzga2azq:/g/g90/USER/src/spack/opt/spack/1
inux-rhel7-x86_64/gcc-4.9.3/py-pyyaml-3.13-nmgca
ksh22c5p251wwwhgtouz6rgduu4: /g/g90/USER/src/spac
k/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/py-six-
1.10.0-z6ym6ink72tpqgpaw3mnr7xxzj7¢ci25d:/g/g90/U
SER/src/spack/opt/spack/linux-rhel7-x86_64/gcc-4
.9.3/py-pycparser-2.17-eifsucgo4w7fjiiyfbz4gyjsw
smytkd2:/g/g90/USER/src/spack/opt/spack/linux-rh
el7-x86_64/gcc-4.9.3/py-cffi-1.1.2-fjkrzx5dyljwl
ikbjlgv7z3ibnzlc5fw:/g/g9@/USER/src/spack/opt/sp
ack/linux-rhel7-x86_64/gcc-4.9.3/python-2.7.14-4
agkfvsiakut5hgegek4psxq7i3wp5be
__LLMOD_REF_COUNT_PKG_CONFIG_PATH=/g/g90/USER/src/spa
ck/opt/spack/linux-rhel7-x86_64/gcc-4.9.3/1z4-1.
8.1.2-p7grndyqisjn4t6q4kiicwykmx7ppumx/1lib/pkgco
nfig:1;/g/g90/USER/src/spack/opt/spack/linux-rhe
17-x86_64/gcc-4.9.3/python-2.7.14-4agkfvsiakut5h
gegek4psxq7i3wp5be/lib/pkgconfig:1
_PLUGIN_PATH=/usr/1ib64/kde4/plugins:/usr/lib/kde4
— /plugins
LMOD_DIR=/usr/share/1mod/1mod/libexec
__LMOD_REF_COUNT_MANPATH=/g/g90/USER/src/spack/opt/s
pack/linux-rhel7-x86_64/gcc-4.9.3/1z4-1.8.1.2-p7
grndyqisjn4t6qg4kiicwykmx7ppumx/share/man:1;/g/g9
0/USER/src/spack/opt/spack/linux-rhel7-x86_64/gc
c-4.9.3/python-2.7.14-4agkfvsiakut5hgegek4psxq7i
3wp5be/share/man:1;/usr/tce/packages/mvapich2/mv
apich2-2.3-intel-18.0.1/man:1;/usr/tce/packages/
intel/intel-18.0.1/man/common:1;/usr/tce/man:1;/
usr/share/lmod/1mod/share/man:1;/usr/man:1;/usr/
share/man:1;/usr/local/man:1;/usr/X11R6/man:1;/u
sr/1ib64/mvapich/default/man:1
ModuleTable@@G =bCIsfSxbInB5LXB5Y3BhcnNlci@yL jE3LW
jYy@oL jkuMy11aWZzdWNnI1@9e1siZm4iXT@il2cvZzkwL 3B
hdGtpMS9zcmMvc3BhY2svec2hhemUve3BhY2svbWOkdWxlcy9 |
saW51eC1yaGVsNy140DZfNjQvcHktcH1 jcGFyc2VyLTIuMTc
tZ2NjLTQuOS4zLWVpZnN1Y2cilLFsiZnVsbE5ShbWUiXT@icHk
tcH1jcGFyc2VyLTIuMTctZ2NjLTQuOS4zLWVpZnN1Y2cilFs
ibG9hZE9yZGVyI109Nyxwecm9OwVD17fSxbInNOYWNrRGYwdGE |
iXTOWLFsic3RhdHVZI1Q9ImFjdG12ZSIsWyJ1c2VyTmFtZST
dPSIweSTweWNwYXJzZXItMi4xNy1nY2MtNC45L jMtZWImc3V
JjZyIsfSxbInB5LXB5eWFtbCozL jEzLWdjYy@oL jkuMyTubWd |
< jYWtzIlQ9e1siZm4iXTQilL2cvZzkwl 3BhdGtpMS9zcmMy
GUESTFISH_RESTORE=\e[0@m
HISTFILE=/g/g9@/USER/.bash_history
LMOD_COLORIZE=yes
LMOD_FAMILY_MPI=mvapich2
DK_NODE=/g/g90/USER/src/spack/share/spack/dotkit/1lin
— ux-rhel7-x86_64

S0l L

L

rrrrrrrrt
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BASH_FUNC_module()=() { eval $($LMOD_CMD bash "$@") _a="se";

< &% eval $(${LMOD_SETTARG_CMD:-:} -s sh) if [ -z "$1" -0 "${_a#x--sh}" != "$_a" -o
3} — "${_a#x--csh}" != "$_a" -o "${_a#*-h}" != "$_a"
BASH_FUNC_spack()=() { if [ -n "${ZSH_VERSION:-}" 1; = 1; then

< then command spack "${args[@]}";

emulate -L sh; else

fi; eval $(command spack $_sp_flags env activate --sh
args=("$@"); - "$e@");

_sp_flags=""; fi

while [[ "$1" =~ ~- 1]; do oY

_sp_flags="$_sp_flags $1"; deactivate)

shift; if [ -n "$1" 1; then

done; command spack "${args[@]}";

if [[ (! -z "$_sp_flags" ) 8& ( "$_sp_flags" =~ else

« '.%h.x' || "$_sp_flags" =~ '.*xV.x' ) ]1]; then eval $(command spack $_sp_flags env deactivate --sh);
command spack $_sp_flags "$@"; fi

return; oy

fi; *)

_sp_subcommand="""; command spack "${args[@]}"

if [ -n "$1" J; then Y

_sp_subcommand="$1"; esac;

shift; fi;

fi; return

_sp_spec=("%e"); HH

case $_sp_subcommand in "use” | "unuse" | "load" | "unload")

"ed™) _sp_subcommand_args="";

_sp_arg=""; _sp_module_args="";

if [ -n "$1" 1; then while [[ "$1" =~ *- 11; do

_sp_arg="$1"; if [ "$1" = "-r" -0 "$1" = "--dependencies" 1; then
shift; _sp_subcommand_args="$_sp_subcommand_args $1";
fi; else

if [[ "$_sp_arg" = "-h" || "$_sp_arg" = "--help" 11; _sp_module_args="$_sp_module_args $1";

— then fi;

command spack cd -h; shift;

else done;

LOC="$(spack location $_sp_arg "$@")"; -sp_spec=("$€");

if [[ -d "$LOC" 11; then case $_sp_subcommand in

cd "$LOC"; "use")

else if _sp_full_spec=$(command spack $_sp_flags module
return 1; — dotkit find $_sp_subcommand_args

fi; —  "${_sp_spec[@]}"); then

fi; use $_sp_module_args $_sp_full_spec;

return else

. $(exit 1);

"env'") fi

_sp_arg=""; 3

if [ -n "$1" 1; then "unuse")

_sp_arg="$1": if _sp_full_spec=$(command spack $_sp_flags module
shift; — dotkit find $_sp_subcommand_args

fi; —  "${_sp_spec[@]}"); then

if [[ "$_sp_arg" = "-h" || "$_sp_arg" = "--help" 11; unuse $_sp_module_args $_sp_full_spec;

— then else

command spack env -h; $§EXit D;

else fi

case $_sp_arg in

activate) "load")
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if _sp_full_spec=$(command spack $_sp_flags module CPU MHz: 2401.000
— tcl find $_sp_subcommand_args "${_sp_spec[@]}"); CPU max MHz: 2401.0000
— then CPU min MHz: 1200.0000
module load $_sp_module_args $_sp_full_spec; BogoMIPS: 4788.70
else Virtualization: VT-x
$(exit 1); L1d cache: 32K

fi L1i cache: 32K

He L2 cache: 256K
"unload") L3 cache: 30720K

if _sp_full_spec=$(command spack $_sp_flags module NUMA node® CPU(s): 0-11,24-35
— tcl find $_sp_subcommand_args "${_sp_spec[@]}"); NUMA nodel CPU(s): 12-23,36-47

— then

module unload $_sp_module_args $_sp_full_spec;

else

$(exit 1);

fi

esac

*)

command spack "${args[@]}"

esac
3
BASH_FUNC_m1()=() { eval $($LMOD_DIR/ml_cmd "$@")
}
+ lsb_release -a
LSB Version: :core-4.1-amd64:core-4.1-noarch:
« cxx—4.1-amd64:cxx-4.1-noarch:desktop-4.1-amd64:d,
— esktop-4.1-noarch:languages-4.1-amd64:languages-
— 4.1-noarch:printing-4.1-amd64:printing-4.1-noarch
Distributor ID: RedHatEnterpriseServer

Description: Red Hat Enterprise Linux Server
— release 7.6 (Maipo)

Release: 7.6

Codename: Maipo

+ uname -a

Linux catalyst160 3.10.0-957.10.1.1chaos.ch6.x86_64
— #1 SMP Thu Mar 14 17:57:30 PDT 2019 x86_64 x86_64
— x86_64 GNU/Linux

+ lscpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48

On-line CPU(s) list: 0-47

Thread(s) per core: 2

Core(s) per socket: 12

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuineIntel
CPU family: 6

Model: 62

Model name: Intel(R) Xeon(R) CPU E5-2695 v2
— @ 2.40GHz

Stepping: 4

Flags:

L

fpu vme de pse tsc msr pae mce
— cx8 apic sep mtrr pge mca cmov pat pse36 clflush

+ cat /proc/meminfo

MemTotal:
MemFree:
MemAvailable:
Buffers:
Cached:
SwapCached:
Active:
Inactive:
Active(anon):
Inactive(anon):
Active(file):
Inactive(file):
Unevictable:
Mlocked:
SwapTotal:
SwapFree:
Dirty:
Writeback:
AnonPages:
Mapped:
Shmem:

Slab:
SReclaimable:
SUnreclaim:
KernelStack:
PageTables:
NFS_Unstable:
Bounce:
WritebackTmp:
CommitLimit:
Committed_AS:
VmallocTotal:
VmallocUsed:

131592856 kB
61649204 kB
116663548 kB
10380 kB
52193944 kB
0 kB
14690904 kB
39828752 kB
2671856 kB
269928 kB
12019048 kB
39558824 kB
11380 kB
11412 kB
1951740 kB
1951740 kB
108 kB

4 kB
2327124 kB
178368 kB
618664 kB
13536168 kB
4058368 kB
9477800 kB
22304 kB
30408 kB

0 kB

0 kB

0 kB
67748168 kB
3758436 kB
34359738367
1439404 kB

kB

dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx
pdpelgb rdtscp lm constant_tsc arch_perfmon pebs
bts rep_good nopl xtopology nonstop_tsc aperfmperf
eagerfpu pni pclmulqdg dtes64 monitor ds_cpl vmx
smx est tm2 ssse3 cx16 xtpr pdcm pcid dca ssed_1
sse4_2 x2apic popcnt tsc_deadline_timer aes xsave
avx f16c rdrand lahf_1m epb ssbd ibrs ibpb stibp
tpr_shadow vnmi flexpriority ept vpid fsgsbase
smep erms xsaveopt dtherm ida arat pln pts

— spec_ctrl intel_stibp flush_11d
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VmallocChunk: 34291153764 kB
HardwareCorrupted: 0 kB
AnonHugePages: 1783808 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: 0
HugePages_Free: (]
HugePages_Rsvd: 0
HugePages_Surp: ]
Hugepagesize: 2048 kB
DirectMap4k: 2772572 kB
DirectMap2M: 50624512 kB
DirectMapiG: 82837504 kB

+ inxi -F -c@
collect.sh: line 14: inxi: command not found

+ 1sblk -a

NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

sda 8:0 © 1.8T 0 disk

| -sdal 8:1 @ 1.9G 0 part [SWAP]

|-sda2 8:2 @ 1.9G 0 part /localdisk
*-sda3 8:3 © 1.8T 0@ part /tmp

sdb 8:16 @ 26.1G 1 disk

*-rootdev 253:0 0 26.1G 1 mpath

sdc 8:32 0 26.1G 1 disk

‘-rootdev 253:0 0 26.1G 1 mpath

+ lsscsi -s

[6:0:0:0] disk ATA WDC WD2000FYYZ-0 1K01
— /dev/sda  2.00TB

[8:0:0:0] disk LIO-ORG FILEIO 4.0
— /dev/sdb  28.0GB

[9:0:0:0] disk LIO-ORG FILEIO 4.0
— /dev/sdc  28.0GB

+ module list
++ /usr/share/1lmod/1mod/libexec/1mod bash list

Currently Loaded Modules:
1) intel/18.0.1 5) python-2.7.14-gcc-4.9.3-4agkfvs

. 9) py-pyyaml-3.13-gcc-4.9.3-nmgcaks
2) mvapich2/2.3 6) py-cffi-1.1.2-gcc-4.9.3-fjkrzx5
< 10) py-jsonschema-2.5.1-gcc-4.9.3-73eyv21l

3) texlive/2016 7)

< py-pycparser-2.17-gcc-4.9.3-eifsucg 11)

— py-functools32-3.2.3-2-gcc-4.9.3-3xjeigi

4) StdEnv 8) py-six-1.10.0-gcc-4.9.3-z6ym6in
. 12) 1z4-1.8.1.2-gcc-4.9.3-p7grndy

+ eval 'MODULEPATH=/g/g9@/patkil/src/spack/share/spa

L

!

L

ck/modules/linux-rhel7-x86_64:/usr/tce/modulefil
es/MPI/mvapich2/2.3:/usr/tce/modulefiles/MPI/int
el/18.0.1/mvapich2/2.3:/usr/tce/modulefiles/Comp
iler/intel/18.0.1:/collab/usr/global/tools/modul |
efiles/toss_3_x86_64_ib/Core:/usr/tce/modulefile
s/Core:/usr/apps/modulefiles:/usr/share/modulefi
les/Linux:/usr/share/modulefiles/Core:/usr/share
/1mod/1mod/modulefiles/Core; "' export
'"MODULEPATH; ' '_ModuleTable@@1_=X@1vZHVsZVRhYmx1
Xz17WyJNVHZ1cnNpb24iXTOzLFsiY19yZWI1aWxkVG1tZSJd
PWZhbHN1LFsiY19zaG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9
e30sZmFtaWx5PXtbImNvbXBpbGVyI1@9ImludGVsIixbImlw
aSJdPSJtdmFwaWNoMiIsfSxtVD17U3RkRW52PXtbImZuIle9
I1i91c3IvdGN1L21vZHVSZWZpbGVzLONvemUVU3RKRW52Lmx1
YSIsWyJImdWxsTmFtZSJdPSITAGRFbnYiLFsibGOhZE9yZGVy
I109NCxwecm9OwVD17fSxbINNOYWNrRGVwdGgiXTOWLFsic3Rh
dHVZI1@9ImFjdG12ZSIsWyJ1c2VyTmFtZSIdPSITAGRFbnY1 |
LHOsaW50ZWw9e1siZm4iXTOiL3Vzci90Y2UvbWokdWx1Zmls |
ZXMvQ29yZS9pbnR1bC8x0C4wWL jJEUbHVhIixbImZ1bGXxOYWT1 |
I1109ImludGVsLzE4;' export '_ModuleTable0@1_;'
'_ModuleTable@@2_=L jAuMSIsWyJsb2FkT3JKkZXIiXTOxLH
Byb3BUPXt9LFsic3RhY2tEZXBOaCJdPTEsWyJzdGFOAXMiXT
01YWNOaXZ1IixbInVzZXJOYW11I109ImludGVsIix9LFsibH
00LTEUOC4XLjItZ2NjLTQuUOS4ZzLXA3Z3JuZHKiXT17WyJmbi |
JdPSIvZy9nOTAvcGF@a2kxL3NyYy9zcGF jay9zaGFyZS9zcG
Fjay9tb2R1bGVzL2xpbnV4LXJ0oZWw3LXg4N182NCIsejQtMS
44LJEuMi1nY2MtNC45L jMtcDdncmSkeSIsWy JImdWxsTmFtZS |
JdPSJsejQtMS44L jEuMi1nY2MtNC45L jMtcDdncm5keSIsWy |
Jsb2FkT3JkZXIiXTOxMixwcm9wVD17fSxbInNOYWNrRGVwdG
giXTOWLFsic3RhdHVZI1@9ImFjdG12ZSIsWyJ1c2VyTmFtZS
JdPSJsejQtMS44L jEuMi1nY2MtNC45L jMtcDdncm5keSIsfS |
xt;' export '_ModuleTable0@2_;'
'_ModuleTable@@3_=dmFwaWNoMj17WyJmbiJdPSIvdXNyL3
RjZS9tb2R1bGVmaWx1cy9Db21waWx1ci9pbnR1bC8XOCAWL j |
EvbXZhcGljaDIvMi4zLmx1YSIsWyImdWxsTmFtZSJdPSJtdm
FwaWNoMi8yL jMiLFsibGOhZE9yZGVyI1@9MixwecmOwVD17fS |
xbINNOYWNrRGVwdGgiXTOxLFsic3RhdHVzI109ImFjdGl2ZS
IsWyJ1c2VyTmFtZSJdPSTtdmFwaWNoMi8yL jMiLHOsWy JweS |
1JZmZpLTEUMS4yLWdjYy@oL jkuMy 1mamtyeng11109e1siZm
41XT0OilL2cvZzkwl 3BhdGtpMS9zcmMvc3BhY2svc2hhemUve3
BhY2svbW9kdWx1cy9saW51eC1yaGVsNy140DZfNjQvcHktY2
ZmaSOxLJEuMi1nY2MtNC45L jMtZmprcenp4NSIsWy JmdWxsTm |
FtZSJdPSJweS1jZmZpLTEUMS4yLWd]jYy@0L jkuMy Imamtyen |
gl;"' export

' _ModuleTable0@3_;"'



'_ModuleTable@@4_=IixbImxvYWRPcmR1ciJdPTYscHIvcFQ9e

L

30sWyJzdGF ja@R1cHRoI1@9IMCxbINNOYXR1cyJdPSThY3Rp |
dmUiLFsidXN1ck5hbWUiXT@icHktY2ZmaS@OxLjEuMilinY2M
tNC45L jMtZmprcnp4NSIsfSxbInB5LWZ1bmNOb29sczMyLT |
MuMi4zLTItZ2NjLTQuOS4zLTN4amVpZ2kiXT17WyJmbiJdP
SIvZy9nOTAvcGFa2kxL3NyYy9zcGF jay9zaGFyZS9zcGFj |
ay9tb2R1bGVzL 2xpbnV4LXJoZWw3LXg4N182NCOweSTmdW5 |
jdG9vbHMzMi0zL jTuMy@yLWdjYy@oL jkuMy@zeGplaWdpIi
xbIMZ1bGxOYW11I109InB5LWZ1bmNOb29sczMyL TMuMi4zL
TItZ2NjLTQuOS4zLTN4amVpZ2kilFsibGOhZE9yZGVyI1Q9
MTEscHJvcFQ9e30sWyJzdGF ja@R1cHROI1@IMCXbINNOYXR |
TcyJdPSJh; ' export '_ModuleTable@o4_;'
'_ModuleTable@@5_=Y3RpdmUiLFsidXN1ck5hbWUiXT@ic
HktZnVuY3Rvb2xzMzItMy4yL jMtMi1nY2MtNC45L jMtM3hq
ZW1naSIsfSxbInB5LWpzb25zY2h1bWEtMi41LFEtZ2N]LTQ
u0S4zLTczZX12MmwiXT17WyJmbiJdPSIvZy9nOTAvcGFoa?2 |
kxL3NyYy9zcGF jay9zaGFyZS9zcGF jay9tb2R1bGVzL2xpb |
nV4LXJoZWw3LXg4N182NCOweS1qc29uc2NoZWThLTIUNS4x |
LWdjYy@eL jkuMy@3M2V5djJsIixbImZ1bGxOYW11I109InB
5LWpzb25zY2h1bWEtMi41LJEtZ2NjLTQUOS4zLTczZX12Mm |
WiLFsibGOhZE9yZGVyI109MTAscHIvcFQ9e30sWyJzdGF ja
OR1cHROI109IMCxbINNOYXR1cyJdPSThY3RpdmUiLFsidXN1
ck5hbWUiXT@icHktanNvbnNjaGVtYS@QyL jUuMSTnY2MtNC4 |
5LjMtNzNleXYy;' export '_ModuleTable0@@5_;"
'_ModuleTable@@6_=bCIsfSxbInB5LXB5Y3BhcnNlci@yl
JE3LWdjYy@oL jkuMy11laWZzdWNnI1@9e1siZm4iXT@iL 2cv
ZzkwL 3BhdGtpMS9zcmMve3BhY2sve2hhemUve3BhY2svbWo |
kdWxlcy9saW51eC1yaGVsNy140DZfNjQvcHktcH1 jcGFyc2
VyLTIuMTctZ2NjLTQuOS4zLWVpZnN1Y2cilFsiZnVsbE5hb |
WUiXT@icHktcH1jcGFyc2VyLTIuMTctZ2NjLTQuOS4zLWVp
ZnN1Y2ciLFsibGOhZE9yZGVyI109Nyxwecm9OwVD17fSxbInN
OYWNrRGVwdGgiXTOwLFsic3RhdHVZI109ImF jdG12ZSIsWy
J1c2VyTmFtZSTdPSIweSTweWNwYXJzZXItMi4xNy1nY2MtN
C45L jMtZWImc3VjZyIsfSxbInB5LXB5eWF tbCozL jEZLWA] |
Yy@oL jkuMyTubWdjYWtzI109e1siZm4iXT@il2cvZzkwL 3B
hdGtpMS9zcmMv; ' export '_ModuleTable006_;'
'_ModuleTable@07_=c3BhY2svc2hhcmUvc3BhY2svbW9kd |
Wxlcy9saW51eC1yaGVsNy140DZfNjQvcHktcH15YWTsLTMu
MTMtZ2NjLTQuOS4zLW5tZ2Nha3MilLFsiZnVsbEShbWUiXTQ
icHktcH15YW1sLTMuMTMtZ2NjLTQuOS4zLW5tZ2Nha3MiLF
sibGINZEIyZGVyI1090SxwecmIwVD17fSxbInNOYWNrRGVwd |
GgiXTOwLFsic3RhdHVzI1Q9ImFjdG12ZSIsWyJ1c2VyTmFt
ZSJdPSJweSTweX1hbWwtMy4xMy1nY2MtNC45L jMtbmTnY2F |
rcyIsfSxbInB5LXNpeCOXLFEWL jAtZ2NjLTQuUOS4zLXo2eW
02aW4iXT17WyImbiJdPSIvZy9nOTAvcGF@a2kxL3NyYy9zc
GFjay9zaGFyZS9zcGF jay9tb2R1bGVzL 2xpbnV4LXJ0oZWw3 |
LXg4NL182NCIweS1zaXgtMS4xMC4wLWd]jYy@oL jkuMy 16NNl |
tNmluIixbImZ1;' export

' _ModuleTable0@7_;"'
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'_ModuleTable@@8_=bGx0YW11I109InB5LXNpeCOXLJEWLjALZ |

rerrre

!

+
+

S A A A A A A

2NjLTQuOS4zLX02eW02aW4iLFsibGOhZE9yZGVyI1@90Cxw |
cm9wVD17fSxbINNOYWNrRGVwdGgiXTOWLFsic3RhdHVZI10
9ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSIweS1zaXgtMS4xMC
4wLWdjYy@OL jkuMy16Nn1tNmlulix9LFsicH10aGOuLTIuN
y4xNC1nY2MtNC45L jMtNGFna2Z2cyJdPXtbImZuIl09Iion
L2c5MCOwYXRraTEve3TjL3NwYWNrL3NoYXTIL 3NwYWNrL21
vZHVsZXMvbGludXgtcmhlbDcteDg2XzYOL3B5dGhvbioyL j |
cuMTQtZ2NjLTQuOS4zLTRhZ2tmdnMiLFsiZnVsbE5hbWUiX
TOicH10aGIuLTIuNy4xNC1nY2MtNC45L jMENGFna2Z2cyls
WyJsb2FkT3JkZXIiXT@1LHByb3BUPXtILFsic3RhY2tEZXB
0aCJdPTAs; ' export '_ModuleTable@08_;'
'_ModuleTable0@9_=WyJzdGFOdXMiXT@iYWN@aXZ1IixbI
nVzZXJOYW111109InB5dGhvbi@yL jcuMTQtZ2NjLTQuUOS4zZ |
LTRhZ2tmdnMiLHOsdGV4bG12ZT17WyJImbiJdPSIVAXNyL3R
JZS9tb2R1bGVmaWx1cy9Db3J1L3R1eGxpdmUvMjAXNiSsdW |
EiLFsiZnVsbEShbWUiXT@idGV4bG12ZS8yMDE2IixbImxvY |
WRPcmR1ciJdPTMscHIvcFQ9e30sWyJzdGF ja@R1cHRoOI1Q9 |
MSxbInNN@YXR1cyJdPSIThY3RpdmUiLFsidXN1ck5hbWUiXT@
1dGV4bG12ZS8yMDE2Iix9LHOsbXBhdGhBPXsil2cvZzkwL 3 |
BhdGtpMS9zcmMve3BhY2svec2hhemUve3BhY2svbWOkdWx1c |
y9saW51eC1yaGVsNy140DZFNjQil CTvdXNyL3RjZS9tb2R1 |
bGVmaWx1cy9INUEKkvbXZhcGl jaDIVMi4zIiwil 3Vzci9oY2u
vbW9kdWx1Zmls;' export '_ModuleTable@@9_;'
'_ModuleTable@10_=ZXMvTVBJL21udGVsLzE4L jAuMS9td
mFwaWNoMi8yL jMiLCIvdXNyL3RjZS9tb2RT1bGVmaWx1lcy9D
b21waWx1ci9pbnR1bC8X0C4WL JEILCIVY29sbGFil3Vzci9
nbGI1YWwvdGIvbHMVbWIkdWx1ZmlsZXMvdG9zc18zX3g4N] |
82NF9pYioDb3J1Iiwil 3Vzci90Y2UvbWIkdWx1ZmlsZXMvQ
29yZSIsIi91c3IvYXBwcy9tb2R1bGVmaWxlcyIsIi9lc3Iv
c2hhecmUvbW9kdWx1ZmlsZXMvTGludXgilCIvdXNyL3NoYX]J
1L21vZHVsSZWZpbGVzLONvemUiLCIvdXNyL3NoYXJ1L2xth2 |
QvbG1vZCItb2R1bGVmaWx1cy9Db3J1Iix9LFsic31zdGVtQ
mFzZUTQQVRII109Ii91c3IvdGN1L21vZHVSZWZpbGVZLONY
cmU6L3Vzci9hcHBzL21vZHVsZWZpbGVz0i91c3Ive2hhemU
vbW9kdWx1Zmls;' export '_ModuleTable0@10_;'
'_ModuleTable@11_=ZXMvTGludXg6L3Vzci9zaGFyZS9th
2R1bGVmaWx1cy9Db3J10i91¢c3Ivc2hhemUvbGTvZCIsbWIk |
L21vZHVSZWZpbGVzLONvcmUiLHO=; "' export
'_ModuleTable@11_;"' '_ModuleTable_Sz_=11;'
export '_ModuleTable_Sz_;'

MODULEPATH=/g/g90/patkil/src/spack/share/spack/mo

dules/linux-rhel7-x86_64:/usr/tce/modulefiles/MP
I/mvapich2/2.3:/usr/tce/modulefiles/MPI/intel/18
.0.1/mvapich2/2.3:/usr/tce/modulefiles/Compiler/
intel/18.@.1:/collab/usr/global/tools/modulefile
s/toss_3_x86_64_ib/Core:/usr/tce/modulefiles/Cor
e:/usr/apps/modulefiles:/usr/share/modulefiles/L
inux:/usr/share/modulefiles/Core:/usr/share/lmod
/1mod/modulefiles/Core

export MODULEPATH
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++

_ModuleTable@01_=X01vZHVsZVRhYmx1Xz17WyJINVHZ1cnNp |
b24iXTOzLFsiY19yZWJ1aWxkVG1tZSJdPWZhbHN1LFsiY19z
aG9ydFRpbWUiXT1mYWxzZSxkZXB0aFQ9e30sZmF taWx5PXtb
ImNvbXBpbGVyI109ImludGYsIixbImlwaSJdPSJTtdmFwaWNo
MiIsfSxtVD17U3RKRW52PXtbImZuIl@9Ii91c3IvdGNIL21v
ZHVsZWZpbGVzL@ONvcmUVU3RKRW52Lmx1YSIsWy JmdWxsTmFt |
ZSJdPSJITAGRFbnYilLFsibGOhZE9yZGVyI1@9INCxwecmOwVD17 |
fSxbINNOYWNrRGVwdGgiXTOWLFsic3RhdHVZI1Q9ImFjdG12
ZSIsWyJ1c2VyTmFtZSJdPSITAGRFbnYiLHOsaW50ZWw9e1si |
Zm4iXT@ilL3Vzci90Y2UvbWokdWx1ZmlsZXMvQ29yZS9pbnR1
bC8x0C4wL JEUbHVhIixbImZ1bGxOYW11I109ImludGVsLzE4

export _ModuleTable@@l_

_ModuleTable@@2_=LjAuMSIsWyJsb2FkT3JKZXIiXTOxLHBy
b3BUPXt9LFsic3RhY2tEZXBOaCJdPTEsWyJzdGF@AXMiXT0Q1 |
YWNOaXZ1IixbInVzZXJOYW11I109ImludGVsIix9LFsibHo@
LTEUOC4XLJItZ2NjLTQuUOS4zLXA3Z3JuZHkiXT17WyJImbiJd
PSIvZy9nOTAvcGF@a2kxL3NyYy9zcGF jay9zaGFyZS9zcGFj |
ay9tb2R1bGVzL2xpbnV4LXJoZWw3LXg4N182NCIsejQtMS44 |
LjEuMiTnY2MtNC45L jMtcDdnecm5keSIsWy JmdWxsTmFtZSJd
PSTsejQtMS44LFEUMi1nY2MtNCA5L jMtcDdncmSkeSTsWyJs |
b2FkT3JKkZXIiXTOxMixwecm9wVD17fSxbInNOYWNrRGVwdGgi |
XTOWLFsic3RhdHVzI109ImFjdG12ZSIsWyJ1c2VyTmFtZSJd
PSJsejQtMS44LjEuUMi1nY2MtNC45L jMtcDdnecm5keSIsfSxt

export _ModuleTable0@2_

_ModuleTable@03_=dmFwaWNoMj17WyJmbiJdPSIvdXNyL3Rj
ZS9tb2R1bGVmaWx1cy9Db21waWx1ci9pbnR1bC8x0C4wL JEV |
bXZhcGljaDIvMi4zLmx1YSIsWyJImdWxsTmFtZSJdPSTtdmFw
aWNoMi8yL jMiLFsibGOhZE9yZGVyI1@9MixwcmOwVD17fSxb |
InN@YWNrRGVwdGgiXTOXLFsic3RhdHVzI109ImFjdG12ZSIs
WyJ1c2VyTmFtZSJdPSJtdmFwaWNoMi8yL jMiLHOsWyJweS1] |
ZmZpLTEUMS4yLWdjYy@oL jkuMyTmamtyeng11109e1siZm4i |
XTQilL2cvZzkwL3BhdGtpMS9zcmMve3BhY2svec2hhemUve3Bh |
Y2svbW9kdWx1cy9saW51eC1yaGVsNy140DZfNjQvcHktY2Zm
aSOxL JEuMiTnY2MtNC45L jMtZmprenp4NSIsWy JmdWxsTmFt |
ZSJdPSJweS1jZmZpLTEUMS4yLWdjYyQoL jkuMy 1mamtyeng1

export _ModuleTable@@3_

_ModuleTable@04_=IixbImxvYWRPcmR1lciJdPTYscHJvcFQ9
e30sWyJzdGF ja@R1cHRoI109MCxbINNOYXR1cyJdPSIhY3Rp |
dmUiLFsidXN1ck5hbWUiXT@icHktY2ZmaSOxLjEuMiTnY2Mt |
NC45L jMtZmprcnp4NSIsfSxbInB5LWZ1bmNOb29sczMyLTMu
Mi4zLTItZ2NjLTQuOS4zLTN4amVpZ2kiXT17WyJmbiJdPSIv
Zy9nOTAvcGFOa2kxL3NyYy9zcGF jay9zaGFyZS9zcGF jay9dt |
b2R1bGVzL2xpbnV4LXJoZWw3LXg4N182NCOweSTmdW5jdGIv
bHMzMi0zL jTuMy@yLWdjYyQoL jkuMy@zeGplaWdpIixbImz1
bGxOYW11I109InB5LWZ1bmN@b29sczMyLTMuMi4zLTItZ2N]
LTQuOS4zLTN4amVpZ2kilLFsibGOhZE9yZGVyI109IMTEScHTV |
cFQ9e30sWyJzdGF ja@R1cHRoI1Q9IMCxbINNOYXR1cyJdPSJTh

export _ModuleTable@@4_
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_ModuleTable@05_=Y3RpdmUiLFsidXN1ck5hbWUiXT@icHkt
ZnVuY3Rvb2xzMzItMy4yL jMtMi1nY2MtNC45L jMEM3hqZWln |
aSIsfSxbInB5LWpzb25zY2h1bWEtMi41LjEtZ2NjLTQuUOS4zZ |
LTczZX12MmwiXT17WyJmbiJdPSIvZy9nOTAvcGF@a2kxL3Ny
Yy9zcGF jay9zaGFyZS9zcGF jay9tb2R1bGVzL2xpbnV4LXJo |
ZWw3LXg4N182NCOweS1qc29uc2NoZWThLTIUNS4xLWd]jYyQo |
L jkuMy@3M2V5djIsIixbImZ1bGx0YW111109InB5LWpzb25z
Y2h1bWEtMi41LJEtZ2NjLTQuOS4zLTczZX12Mmwil FsibGSh |
ZE9yZGVyI1@9MTAscHIvcFQ9e30sWyJzdGF jaOR1cHRoOI1Q9 |
MCxbINNQYXR1cyJdPSThY3RpdmUiLFsidXN1ck5hbWUiXTo1 |
cHktanNvbnNjaGVtYSQyL jUuMSTnY2MtNC45L jMtNzN1eXYy

export _ModuleTable@@5_

_ModuleTable@06_=bCIsfSxbInB5LXB5Y3BhcnNlci@yL jE3
LWdjYy@oL jkuMy11laWZzdWNnI1@9e1siZm4iXTOil2cvZzkw
L3BhdGtpMS9zcmMvc3BhY2sve2hhemUve3BhY2svbWokdWxl |
cy9saW51eC1yaGVsNy140DZfNjQvcHktcH1 jcGFyc2VyLTIu
MTctZ2NjLTQuOS4zLWVpZnN1Y2cilLFsiZnVsbEShbWUiXTO1 |
cHktcH1 jcGFyc2VyLTIuMTctZ2NjLTQuOS4zLWVpZnN1Y2ci |
LFsibGOhZE9yZGVyI1@9Nyxwecm9OwVD17fSxbInNOYWNrRGVw |
dGgiXTOwLFsic3RhdHVzI1@9ImFjdG12ZSIsWyJ1c2VyTmFt
ZSJdPSIweSTweWNwYXJzZXItMi4xNy1nY2MtNC45L jMtZW1im |
€3VjZyIsfSxbInB5LXB5eWFtbCOzL jEZLWAjYy@oL jkuMylu
bWdjYWtzI109e1siZm4iXTOil2cvZzkwl 3BhdGtpMS9zcmMy

export _ModuleTable0@6_

_ModuleTable@d7_=c3BhY2svc2hhcmUvc3BhY2svbWOkdWx1
cy9saW51eC1yaGVsNy140DZfNjQvcHktcH15YWTsLTMuMTMt |
Z2NjLTQuOS4zLW5tZ2Nha3MiLFsiZnVsbEShbWUiXT@icHkt |
cHI5YWTsLTMuMTMtZ2NjLTQuOS4zLW5tZ2Nha3MilFsibGoh |
ZE9yZGVyI1090Sxwcm9wVD17fSxbInNOYWNrRGVwdGgiXTow |
LFsic3RhdHVzI109ImFjdG12ZSIsWyJ1c2VyTmFtZSIdPSIw
eSTweX1hbWwtMy4xMy1nY2MtNC45L jMtbm1nY2FrcyIsfSxb
InB5LXNpeCOxLJEWL jAtZ2NjLTQuOS4zLX02eW02aW4iXT17 |
WyJmbiJdPSIvZy9nOTAvcGF@a2kxL3NyYy9zcGFjay9zaGFy |
Z59zcGF jay9tb2R1bGVzL2xpbnV4LXJoZWw3LXg4N182NCOw |
eS1zaXgtMS4xMC4wLWdjYyQoL jkuMy16Nn1tNmlulixbImZ1

export _ModuleTable@@7_

_ModuleTable@08_=bGx0OYW111109InB5LXNpeCOxL jEWL jAt |
Z2NjLTQUOS4zLX02eW02aW4iLFsibGIhZEIyZGVyI1090Cxw |
cm9IwVD17fSxbINNOYWNrRGVwdGgiXTOwLFsic3RhdHVZI109
ImFjdG12ZSIsWyJ1c2VyTmFtZSJdPSJweS1zaXgtMS4xMC4w |
LWdjYy@oL jkuMy16Nn1tNmlulix9LFsicH1@aGOuLTIuNy4x
NC1nY2MtNC45L jMtNGFna2zZ2cyJdPXtbImZuI109Iionl 2c5
MCOWYXRraTEvc3JjL3NwYWNrL3NoYXT1L3NwYWNrL21vZHVs |
ZXMvbGludXgtcmhlbDcteDg2XzYOL3B5dGhvbi@yL jcuMTQt |
Z2NjLTQuOS4zLTRhZ2tmdnMiLFsiZnVsbE5hbWUiXT@icH10 |
aG9uLTIuNy4xNCTnY2MtNC45L jMtNGFna2Z2cyIsWyJsb2Fk
T3JkZXIiXT@O1LHBYyb3BUPXt9LFsic3RhY2tEZXBOaCJdPTAs

export _ModuleTable@@8_



++ _ModuleTable@@9_=WyJzdGFOdXMiXT@iYWN@aXZ1IixbInVz
— ZXJOYW11I109InB5dGhvbi@yL jcuMTQtZ2NjLTQuOS4zLTRh
—  Z2tmdnMiLHOsdGV4bG12ZT17WyJImbiJdPSIVAXNyL3RjZS9t
— b2R1bGVmaWx1cy9Db3J1L3R1eGxpdmUvMjAxNi5sdWEiLFsi |
—  ZnVsbE5hbWUiXT@idGV4bG12ZS8yMDE2IixbImxvYWRPcmRI
— €1JdPTMscHJvcFQ9e30sWyJzdGF jadR1cHRoI109MSxbINNO
— YXR1cyJdPSJhY3RpdmUilLFsidXN1ck5hbWUiXT@idGV4bG12
—  ZS8yMDE2Iix9LH@sbXBhdGhBPXsil2cvZzkwl 3BhdGtpMS9z
— cmMvc3BhY2svc2hhemUve3BhY2svbW9kdWx1lcy9saW51eCly
— aGVsNy140DZfNjQiLCIvdXNyL3RjZS9tb2R1bGVmaWx1cyIN
— UEkvbXZhcGljaDIvMi4zIiwil3Vzci9@Y2UvbW9kdWx1Zmls

++ export _ModuleTable@@9_

++ _ModuleTable@10_=ZXMvTVBJIL21udGVsLzE4L jAuMS9tdmFw
— aWNoMi8yL jMiLCIvdXNyL3RjZS9tb2R1bGVmaWx1cy9Db21w,
« aWxlci9pbnR1bC8x0C4wWL JEILCIVY29sbGFil3VzcionbG9i
—  YWwvdGOvbHMvbWIOkdWx1ZmlsZXMvdG9zc18zX3g4N182NF9p |
— Yi9Db3J1Iiwil 3Vzci9@Y2UvbWOkdWx1ZmlsZXMvQ29yZSIs
« I191c3IvYXBwcy9tb2R1bGVYmaWxlcyIsIi9lc3Ivc2hhemUy
—  bWIkdWx1ZmlsZXMvTGLludXgiLCIvdXNyL3NoYXJ1L21vZHVs
—  ZWZpbGVzL@ONvcmUiLCIvdXNyL3NoYXJ1L2xtb2QvbG1vZCIt
— b2R1bGVmaWx1cy9Db3J1Iix9LFsic31zdGVtQmFzZUTQQVRI
— I109Ii91c3IvdGN1L21vZHVSZWZpbGVzLONvemUEL3VzZzcidh
—  cHBzL21vZHVsZWZpbGVz0i91c3Ivc2hhemUvbWokdWx1Zmls

++ export _ModuleTable@10_

++ _ModuleTable@11_=ZXMvTGludXg6L3Vzci9zaGFyZS9tb2R1
bGVmaWx1cy9Db3J10i91c3Ivec2hhemUvbG1vZCIsbWOKL21v |
ZHVSZWZpbGVzLONvcmUiLHO=

++ export _ModuleTable@11_

++ _ModuleTable_Sz_=11

++ export _ModuleTable_Sz_

++ : -s sh

+ eval

+ nvidia-smi

NVIDIA-SMI has failed because it couldn't communicate
— with the NVIDIA driver. Make sure that the latest
— NVIDIA driver is installed and running.

!

!

+ 1lshw -short -quiet -sanitize

Patki, et al.

/0/100/1/0/8 C608/C606/X79
— series chipset PCI Express Virtual Switch Port
/0/100/1/0/8/0 storage C600/X79 series
— chipset Dual 4-Port SATA Storage Control Unit

bridge

/0/100/1/0/8/0.3 bus C600/X79

— series chipset SMBus Controller 0
/0/100/1/0/8/0.4 bus C608/C606/X79
— series chipset SMBus Controller 1

/0/100/1.1 bridge Xeon E7

— Vv2/Xeon E5 v2/Core i7 PCI Express Root Port 1b

/0/100/1.1/0 enol network 1350 Gigabit
— Network Connection

/0/100/1.1/0.1 eno2 network 1350 Gigabit
— Network Connection

/0/100/1.1/0.2 pub network 1350 Gigabit
— Network Connection

/0/100/1.1/0.3 eno4 network 1350 Gigabit
— Network Connection

/0/100/2 bridge Xeon E7

— Vv2/Xeon E5 v2/Core i7 PCI Express Root Port 2a
/0/100/2.2 bridge Xeon E7
— Vv2/Xeon E5 v2/Core i7 PCI Express Root Port 2c
/0/100/3 bridge Xeon E7
— Vv2/Xeon E5 v2/Core i7 PCI Express Root Port 3a

/0/100/3/0 hsio bus IBA7322 QDR
— InfiniBand HCA
/0/100/3.2 bridge Xeon E7

— v2/Xeon E5 v2/Core i7 PCI Express Root Port 3c
/0/100/4 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel @
/0/100/4.1 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 1
/0/100/4.2 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 2
/0/100/4.3 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 3
/0/100/4.4 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 4

+ cat

WARNING: you should run this program as super-user.

H/W path Class Description
system Computer

/0 bus Motherboard

/0/0 memory 128GiB System

< memory

/0/6 processor Intel(R)

— Xeon(R) CPU E5-2695 v2 @ 2.40GHz

/0/7 processor Intel(R)

— Xeon(R) CPU E5-2695 v2 @ 2.40GHz

/0/100 bridge Xeon E7

— v2/Xeon E5 v2/Core i7 DMI2

/0/100/1 bridge Xeon E7

— Vv2/Xeon E5 v2/Core i7 PCI Express Root Port 1a

/0/100/1/0

bridge

C608/C606/X79

— series chipset PCI Express Upstream Port

/0/100/4.5 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 5
/0/100/4.6 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 6
/0/100/4.7 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Crystal Beach DMA Channel 7
/0/100/5 generic Xeon E7

— v2/Xeon E5 v2/Core i7 VTd/Memory Map/Misc
/0/100/5.1 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Memory Hotplug

/0/100/5.2 generic Xeon E7

— v2/Xeon E5 v2/Core i7 IIO RAS

/0/100/5.4 generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 IOAPIC

/0/100/16 communication C600/X79

— series chipset MEI

Controller #1
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/0/100/16.1 communication C600/X79
— series chipset MEI Controller #2

/0/100/1a bus C600/X79
— series chipset USB2 Enhanced Host Controller #2
/0/100/1c bridge C600/X79
— series chipset PCI Express Root Port 1
/0/100/1c.7 bridge C600/X79
— series chipset PCI Express Root Port 8
/0/100/1c.7/0 display MGA G200e
— [Pilot] ServerEngines (SEP1)

/0/100/1d bus C600/X79
— series chipset USB2 Enhanced Host Controller #1
/0/100/1e bridge 82801 PCI
— Bridge

/0/100/1f bridge C600/X79
— series chipset LPC Controller

/0/100/1f.2 storage C600/X79
— series chipset 6-Port SATA AHCI Controller
/0/100/1f.3 bus C600/X79
— series chipset SMBus Host Controller

/0/8 generic Xeon E7
— v2/Xeon E5 v2/Core i7 QPI Link @

/0/9 generic Xeon E7
— v2/Xeon E5 v2/Core i7 QPI Link 1

/0/a generic Xeon E7
— v2/Xeon E5 v2/Core i7 Power Control Unit @
/0/b generic Xeon E7
— v2/Xeon E5 v2/Core i7 Power Control Unit 1
/0/c generic Xeon E7
— v2/Xeon E5 v2/Core i7 Power Control Unit 2
/0/d generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Power Control Unit 3
/0/e generic Xeon E7
— v2/Xeon E5 v2/Core i7 UBOX Registers

/0/f generic Xeon E7
— v2/Xeon E5 v2/Core i7 UBOX Registers

/0/10 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers

/0/11 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers

/0/12 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers

/0/13 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers

/0/14 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers

/0/15 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers

/0/16 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers

/0/17 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers

/0/18 generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Unicast Registers

/0/19 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/1a generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers
/0/1b generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers
/0/1c generic Xeon E7
— v2/Xeon E5 v2/Core i7 Home Agent @

/0/1d generic Xeon E7
— v2/Xeon E5 v2/Core i7 Home Agent @

/0/1e generic Xeon E7

— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller @ Target Address/Thermal Registers
/0/1f generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller @ RAS Registers

/0/20 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller 0
— Channel Target Address Decoder Registers
/0/21 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @
— Channel Target Address Decoder Registers
/0/22 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @
— Channel Target Address Decoder Registers
/0/23 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @
— Channel Target Address Decoder Registers
/0/24 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 Thermal Control @
/0/25 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 Thermal Control 1
/0/26 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers @
/0/27 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers 1
/0/28 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 Thermal Control 2
/0/29 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel ©-3 Thermal Control 3
/0/2a generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers 2
/0/2b generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers 3

/0/2c generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 R2PCIe
/0/2d generic Xeon E7

— v2/Xeon E5 v2/Core i7 R2PCIe



/0/2e
— Vv2/Xeon E5
/0/2f
— E5 v2/Core
/0/30
— E5 v2/Core
/0/31
— Vv2/Xeon E5
/0/32
— v2/Xeon E5
/0/33
— Vv2/Xeon E5
/0/34
— Vv2/Xeon E5
/0/35
— Vv2/Xeon E5
— Controller
/0/36
— Vv2/Xeon E5
— Controller
/0/37
— E5 v2/Core

generic Xeon E7
v2/Core i7 QPI Ring Registers
generic Xeon E7 v2/Xeon

i7 QPI Ring Performance Ring Monitoring

generic Xeon E7 v2/Xeon

i7 QPI Ring Performance Ring Monitoring

generic Xeon E7
v2/Core i7 System Address Decoder

generic Xeon E7
v2/Core i7 Broadcast Registers

generic Xeon E7
v2/Core i7 Broadcast Registers

generic Xeon E7
v2/Core i7 Home Agent 1

generic Xeon E7

v2/Core i7 Integrated Memory
1 Target Address/Thermal Registers
generic Xeon E7
v2/Core i7 Integrated Memory
1 RAS Registers
generic Xeon E7 v2/Xeon
i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/38
— E5 v2/Core

generic Xeon E7 v2/Xeon
i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/39
— E5 v2/Core

generic Xeon E7 v2/Xeon
i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/3a
— E5 v2/Core

generic Xeon E7 v2/Xeon
i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/3b
— v2/Xeon E5
— Controller
/0/3c
— v2/Xeon E5
— Controller
/0/3d
— Vv2/Xeon E5
— Controller
/0/3e
— Vv2/Xeon E5
— Controller
/0/3f
— Vv2/Xeon E5
— Controller
/0/40
— Vv2/Xeon E5
— Controller
/0/41
— Vv2/Xeon E5
— Controller
/0/42
— Vv2/Xeon E5
— Controller

generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel ©-3 Thermal Control @
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 Thermal Control 1
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers @
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers 1
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel ©-3 Thermal Control 2
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel ©-3 Thermal Control 3
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers 2
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers 3

/0/1

— v2/Xeon
/0/2

— v2/Xeon
/0/2/0

E5

E5

— InfiniBand

/0/2.2

— v2/Xeon
/0/3

— v2/Xeon
/0/3.2
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/0/4c generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/4d generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers
/0/4e generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/4f generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers
/0/50 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/51 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/52 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/53 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/54 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Unicast Registers
/0/55 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/56 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Unicast Registers
/0/57 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Home Agent @

/0/58 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Home Agent 0

/0/59 generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller @ Target Address/Thermal Registers
/0/5a generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller @ RAS Registers

/0/5b generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder Registers

/0/5¢c generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder Registers

/@/5d generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder Registers

/0/5e generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder Registers

/0/5f generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 Thermal Control 0

/0/60 generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 Thermal Control 1

/0/61 generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers @

/0/62 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers 1
/0/63 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 Thermal Control 2
/0/64 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel ©-3 Thermal Control 3
/0/65 generic Xeon E7
— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers 2
/0/66 generic Xeon E7
— Vv2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Channel 0-3 ERROR Registers 3

/0/67 generic Xeon E7

< Vv2/Xeon E5 v2/Core i7 R2PCIe

/0/68 generic Xeon E7

— v2/Xeon E5 v2/Core i7 R2PCIe

/0/69 generic Xeon E7

— v2/Xeon E5 v2/Core i7 QPI Ring Registers

/0/6a generic Xeon E7 v2/Xeon
— E5 v2/Core i7 QPI Ring Performance Ring Monitoring
/0/6b generic Xeon E7 v2/Xeon
— E5 v2/Core i7 QPI Ring Performance Ring Monitoring
/0/6¢c generic Xeon E7

— v2/Xeon E5 v2/Core i7 System Address Decoder
/0/6d generic Xeon E7

— v2/Xeon E5 v2/Core i7 Broadcast Registers

/0/6e generic Xeon E7

< v2/Xeon E5 v2/Core i7 Broadcast Registers

/0/6f generic Xeon E7

— Vv2/Xeon E5 v2/Core i7 Home Agent 1

/0/70 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 Target Address/Thermal Registers
/0/71 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller 1 RAS Registers

/0/72 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/73 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/74 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/75 generic Xeon E7 v2/Xeon
— E5 v2/Core i7 Integrated Memory Controller 1

— Channel Target Address Decoder Registers

/0/76 generic Xeon E7

— v2/Xeon E5 v2/Core i7 Integrated Memory

— Controller @ Channel 0-3 Thermal Control @



/0/77
— v2/Xeon E5
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/0/78
— Vv2/Xeon E5
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— Vv2/Xeon E5
— Controller
/0/7a
— Vv2/Xeon E5
— Controller
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/0/7c
— Vv2/Xeon E5
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— v2/Xeon E5
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generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 Thermal Control 1
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers @
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers 1
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 Thermal Control 2
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel ©-3 Thermal Control 3
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers 2
generic Xeon E7

v2/Core i7 Integrated Memory

@ Channel 0-3 ERROR Registers 3

/0/7e system PnP device
— PNPQc02

/0/7f system PnP device
— PNP0b00Q

/0/80 generic PnP device
— INT3fod

/0/81 communication PnP device
— PNP0@501

/0/82 communication PnP device
— PNP0501

/0/83 system PnP device
— PNP0@c02

/0/84 system PnP device
— PNP0cO1

ARTIFACT EVALUATION

Verification and validation studies: Yes. In our dataset, each test
was run multiple times to ensure statistical significance. The paper
describes these verification and validation steps in detail. Our paper
targets the question of performance optimality and reproducibility
in HPC, we ensure that our data is sanitized, and we build models
based to determine influence of different parameters (e.g. power,
network, concurrency) on performance. Additionally, we explore
the tradeoff space between optimality and reproducibility using a
novel quantifiable ’desirability’ score.

Accuracy and precision of timings: Yes, precision of timing was
tuned and verified multiple times through different sources (e.g.
application reported time, profiler time, and system time). Our
results report the application reported time in all cases.

Used manufactured solutions or spectral properties: No.

Quantified the sensitivity of results to initial conditions and/or
parameters of the computational environment: Yes. See comment
below.
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Controls, statistics, or other steps taken to make the measurements
and analyses robust to variability and unknowns in the system. Our
paper addresses the issue of variability by presenting a new ma-
chine learning model. We statistically analyze how performance
reproducibility can be an issue in HPC and how we can quantify
and understand the impact of parameters such as network, power,
and concurrency on application optimality and reproducibility. We
ensured that our dataset was collected in a controlled environment
with all system daemons and Lustre-like services turned off.
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