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Abstract—Performance anomaly in High Performance Com-
puting (HPC) can be defined as run-to-run variation of an appli-
cation in repeated runs with the same set of configuration param-
eters. Such variations can occur for myriad reasons, including
contention for shared resources such as the network and dynamic
data distribution across application processes. Traditionally HPC
researchers focus on real-time anomaly detection using different
Machine Learning (ML) methods. These popular methods, such
as auto-encoder, limit finding anomalous event patterns during
training time. On top of that, in HPC, performance data are
stored in tabular format. Though gradient-based methods have
already proved their significant improvement over classification
tasks, they explicitly use feature-feature relationships, ignoring
the potential sample-sample relationship. To fill this gap, we build
a performance anomaly classification technique leveraging the
potential graph-based representation learning. We hypothesize
that a meaningful and robust representation considering the
sample-sample relationship for the given tabular datasets will
improve the downstream anomaly classification technique. We
conduct our experiment on 5 HPC datasets and 6 ML datasets.
Our empirical study proves that graph-based anomaly classifica-
tion outperforms the gradient-based approaches in 6 out of 11
experiments. We also explain how anomaly decisions are made
inside the performance graph.

Index Terms—High-Performance Computing, Graph Neural
Network, Performance Analytics, Anomaly Classification

I. INTRODUCTION

HPC systems consist of billions of components from com-
pute nodes, memories, networks, and storage, where these
components interact with each other in a complex manner.
To ensure the applications are effectively making progress,
HPC facilities deploy real-time performance monitoring tools,
such as Chimbuko [1], [2] to monitor system performance.
Despite significant improvements in HPC, different hardware
heterogeneity, resource contention, system load, and external
issues such as human errors are responsible for generating
performance variations in applications. Performance anomalies
manifest as a variation in the execution time of the same
application run with the same configurations multiple times.

Although real-time performance monitoring systems such as
Chimbuko detect anomalies in real-time, they don’t answer
if there is a pattern of anomalies in the system. If system
administrators know patterns in anomalous events, they can
anticipate and take preventive actions against those anomalies,
helping to build a more reliable and robust system. In this

work, we propose a new method for classifying performance
anomalies and explain the factors affecting an ML model’s
determination of sample anomaly.

Tree-based gradient descent algorithms, such as XG-
Boost [3] and LightGBM [4], have shown significant effec-
tiveness in improving the fidelity of a classifier in differ-
ent domains [5]–[8]. Additionally, the Deep Neural Network
(DNN)-based approach is very popular for different domains
such as [9]–[12]. However, gradient-based and DNN based
algorithms explicitly work on feature-feature relationships,
without exploring the potential of sample-sample relationships
in a given tabular dataset. Our work aims to bridge the gap
by transforming tabular data into a graph that models both
sample and feature relationships. We leverage a state-of-the-art
Graph Neural Network (GNN)-based representation learning
technique to learn embeddings from the performance samples.
These embeddings are then used to train a binary classifier to
predict whether a previously unseen performance sample is
anomalous.

However, unlike other research domains, graphs aren’t given
in the performance analysis domain, they need to be built.
A related work, [13], proposes building graphs from tabular
data for regression tasks, our work specifically addresses
classification. While our graph-building method is similar
to [14], their work uses an inductive graph learning method
for ML classification datasets. In contrast, our work studies 2
graph learning approaches, defines a new distance measure
for considering domain-specific features, and applies this
approach to HPC performance data.

To summarize, the contributions made in this paper are:
• Study the impact of different graph learning methods on the

effectiveness of embeddings;
• Leverage both numerical and domain-specific features dur-

ing embedding learning;
• Compare how graph-based representation learning impacts

the efficacy of downstream classification tasks.
II. BACKGROUND

A. Graph Learning Methods
Transductive and inductive learning are approaches used in

graph-based ML, particularly in the context of GNNs and
graph-based semi-supervised learning. This section provides
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(a) Transductive graph learning. All
nodes are within a single graph struc-
ture, nodes are sampled to create
training, validation, and test sets.
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(b) Inductive graph learning. Nodes
are sampled to create training, vali-
dation, and test sets, from which 3
disjoint graphs are created.

Fig. 1: Comparison of graph-based learning methods. The
colors indicate the training set–purple, the validation set–blue,
and the test set–gold.

a high-level overview of these methods. Later, we study the
performance of building graphs from tabular datasets using
these methods.
1) Transductive Learning

In transductive learning [15], a model learns to predict
labels for nodes or edges in a graph based on the information
available within the entire graph structure and features of the
observed data points. From Figure 1(a) we see that though
nodes are split into different sets, they are still connected, such
that the graph structure remains unchanged during training
and testing. Though there exist connections from the test set
to other sets, only labels from samples within the train set are
available during training to ensure the model does not train
using labels of nodes from another set.
2) Inductive Learning

In inductive learning [16], a model is trained using disjoint
graphs to predict the label of an unseen node or edge. The data
for inductive learning is split as shown in Figure 1(b). Models
trained using graphs created for inductive learning generalize
better than those created using the transductive approach. A
key benefit of the inductive learning approach is that it is more
scalable, as the representations learned for node classification
are more localized and rely less on a node’s position within
the larger graph.

III. OUR APPROACH
A. Problem Formulation

We propose reimagining a tabular performance dataset as
a graph to build an effective representation of performance
samples. The rationale for creating graphs from tabular perfor-
mance datasets is that a graph’s structure can describe inherent
relationships among performance samples and features within
a dataset. However, unlike other relational graphs, these rela-
tionships are not explicitly provided in a tabular performance
dataset.

With the construction of a graph, embeddings for each node
can be learned, and the task of anomaly classification can be
reduced to the prediction of node labels. We hypothesize that
capturing the sample-sample relationships will make the sam-
ple embedding more meaningful, improving the downstream
anomaly classifier’s efficacy.
B. Building Initial Graph from Performance Data

Figure 2 shows the overall pipeline of our work. In the first
step, we transform the tabular data to a graph, G = (V,E),
where V is the set of all vertices and E is the set of all

edges. Specifically, we map each sample of the tabular dataset
into a node Vi ∈ V. To create edges, we begin by computing
the pairwise distance between each pair of samples using a
distance measure, as described in Section III-C. For a given
sample, we choose the top N nearest neighbors as neighbors
with the N lowest distances, and create edges with weights
1−distance, where distance is between 0 and 1. Each edge,
e ∈ E, connects 2 samples based on their feature values.
C. Distance Measures

HPC datasets often contain a mixture of both numerical
and domain-specific features, e.g., algorithm names, hardware
performance counters, and callstacks. Hence, while building
a graph, we need to develop a data-type-aware distance
measure. Considering the use case of a real-time performance
monitoring and anomaly detection framework, Chimbuko,
columns in the tabular format are the features while the rows
are the samples. Most features are numeric, except the domain-
specific callstack column. Numeric features are normalized by
column to be between 0 and 1.
Numeric features: The Euclidean distance between 2 samples
is calculated as the sum of the absolute value of the difference
of their feature vectors divided by the length of a feature
vector. Given X and Y, 2 feature vectors, the Euclidean
distance is calculated using Equation 1. Here, ℓ(X) is the
length of the vector X.

deuclid(X,Y ) =

∑
|X − Y |
ℓ(X)

(1)

Domain-specific features: We define custom distance
functions to calculate the similarity between domain-
specific features that are non-numeric. Specifically, the HPC
Chimbuko performance monitoring framework captures the
callstack of logged events to describe the provenance of
performance anomalies. Each callstack is comprised of many
parameters, e.g., function id (FID), entry timestamp (entry),
and exit timestamp (exit). We find the symmetric difference
between 2 sets using FIDs. A greater difference indicates less
similarity between 2 callstacks. If C1 and C2 represent the
callstacks of samples X and Y, the callstack distance is found
using Equation 2 where ℓ(C1) and ℓ(C2) are the lengths of
callstacks C1 and C2.

dcallstack(X,Y ) =
2× ℓ(C1 ∩ C2)

ℓ(C1) + ℓ(C2)
(2)

Equation 2 yields a distance between 0, when 2 callstacks
include the same FIDs, and 1 when there are no common
FIDs, and could be applied to any such categorical feature.

In graph creation, we combine the feature distance with ratio
R of the callstack distance using Equation 3, where R is 1/2,
1/3, or 0 for Chimbuko datasets and 0 for all others.

distance = dfeature × (1−R) + dcallstack ×R (3)

D. Learning Embeddings from Graphs
After creating a graph, we leverage a GNN-based method

to learn node embeddings. In this study, we evaluate both
transductive and inductive approaches. To our knowledge,
this is the first work to evaluate both methods in the
context of performance graph learning.
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Map samples 
as graph nodes

Calculate 
distance

Choose closest N 
neighbours

Assign distance as
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Embedding 
Learning using GNN

Generate 
node Embeddings

Fig. 2: Pipeline of our graph-based anomaly classification method: we map each sample as a node of a graph, calculate pairwise
distances between nodes, connect each node to their nearest N neighbors with an edge-weighted by their distance, then learn
and create node embeddings using GNN.

E. Explainability of our methods
GNNExplainer: GNNExplainer [17] is an innovative

method to improve the interpretation of Graph Neural Net-
works. It provides researchers and practitioners with a means
to visualize semantically relevant subgraph structures, provid-
ing insight into the underlying patterns that the GNN has
learned during training.

SHAP: SHapley Additive exPlanations (SHAP) [18] is a
game-theoretic approach to explain the output of machine
learning models. Each element is assigned a value of im-
portance, which reveals its influence on model forecasts.
By showing the effect of individual features on results, this
method increases model transparency and interpretation.
F. Parallelization of Graph Creation

To reduce graph creation time for large datasets, we use
ProcessPoolExecutor from concurrent.futures
to parallelize the method. Each subprocess receives a copy
of the graph without edges, the number of processes, and its
process ID, then creates an empty graph, adding edges for
nodes starting from its process ID and stepping by the number
of processes. Completed graphs are merged into the original,
resulting in a final graph with all nodes, edges, and data.

IV. IMPLEMENTATION

A. Software and Libraries
Our pipeline is implemented using Python packages and

libraries including Scikit-learn [19], NetworkX [20], and
DGL [21].
B. GNN Architecture

We leverage the following in the GNN-based model:
Activation: The Leaky ReLU [22] activation introduces non-
linearity, enabling complex functional relationships.

Dropout: Dropout layers are employed to improve robust-
ness and limit overfitting.

Optimizer: The Adam Optimizer [23] is used to adjust
model parameters effectively to minimize the loss function.

Scheduler: The ReduceLROnPlateau scheduler controls the
learning rate to improve convergence during training.

V. EXPERIMENTAL SETUP

A. System
Texas Advanced Computing Center (TACC) provides super-

computing facilities to researchers. We leverage the Lonestar6
computing cluster for our experiments. Each compute node is
comprised of 2 AMD EPYC 7763 64-core (Milan) CPUs and
256 GB of DDR4 memory.
B. Datasets

We evaluate our graph-based performance anomaly classi-
fication approach with 5 HPC datasets. To evaluate the gener-
alizability of our approach, we also assess performance using
6 ML benchmark datasets. Table I describes each dataset.

TABLE I: Description of anomaly classification datasets.

Dataset Samples Features Anomaly
instances

%-of-
Anomaly

singlereuse [1] 3349 19 1787 53.36
allreuse [1] 23286 20 13654 58.63
singlerepeat [1] 53034 18 40034 75.48
allrepeat [1] 144771 20 106109 73.29
seismic [24] 2584 15 170 6.57
phoneme [25] 5404 5 1586 29.34
satimage [26] 5803 36 71 1.22
musk [27] 6598 166 1017 15.41
bank [28] 45211 10 5289 11.70
smtp [29] 95156 3 30 0.03
1000-
genome [30]

20687 30 5173 25

C. Anomaly Classification Baselines
In this work, we evaluate 3 different graph-based repre-

sentation learning methods—Graph Convolutional Network
(GCN) [31], Graph Attention Network (GAT) [32], and Graph-
SAGE [16]. We compare our proposed graph-based anomaly
classification techniques with those of several baseline meth-
ods commonly used as classification for tabular data. Specif-
ically, we compare with XGBoost [3], LightGBM [4], and
DNN [33].
D. Evaluation Metrics

We use three different metrics for evaluating our model:
accuracy, F1 score, and Mathews Correlation Coefficient
(MCC) score. Accuracy is the ratio of true predictions to
the total number of predictions, and is given by the for-
mula TP+TN

TP+FP+TN+FN . The F1 score is the harmonic mean
of precision, where precision is the ratio of instances pre-
dicted to be positive that were correct, and is given by the
formula 2×TP

2×TP+FN+FP . The MCC [34] score captures the
quality of a binary classification model’s predictions, works
well with imbalanced data, and is given by the formula

TN×TP−FP×FN√
(TN+FN)(FP+TP )(TN+FP )(FN+TP )

.

VI. RESULTS

In this section, we evaluate the effectiveness of our proposed
graph-based anomaly classification method using various GNN
architectures. Specifically, we report the accuracy, F1 score,
and MCC score for 11 datasets.
• RQ1: Does the learning method (transductive vs inductive)

during graph building impact the effectiveness of anomaly
classification methods?

• RQ2: Does the minimum number of neighbors impact the
effectiveness of graph-based anomaly classification meth-
ods?

• RQ3: What is the overall performance of different anomaly
classification methods?

• RQ4: Can we explain “why” performance samples are
classified as anomalous?
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TABLE II: F1 score, MCC score, and accuracy for each method by dataset. The graph creation parameters used were those
which achieved the highest F1 and MCC scores with the SAGE classifier. The highest MCC score of each row is highlighted.

Dataset

XGboost LightGBM DNN GAT GCN SAGE Parameters

F1 MCC ACC F1 MCC ACC F1 MCC ACC F1 MCC ACC F1 MCC ACC F1 MCC ACC T/I N C

singlerepeat 0.92 0.63 86.96 0.92 0.63 87.22 0.58 -0.05 47.69 0.89 0.63 83.98 0.90 0.68 86.09 0.94 0.79 91.39 T 7 1/3

singlereuse 0.80 0.53 76.90 0.83 0.58 79.73 0.29 0.00 45.88 0.81 0.59 79.64 0.81 0.61 79.93 0.93 0.85 92.42 T 2 0

allrepeat 0.91 0.65 86.79 0.91 0.62 85.98 0.31 0.00 36.21 0.89 0.64 84.08 0.89 0.68 85.15 0.86 0.64 81.39 T 7 1/2

allreuse 0.86 0.65 83.17 0.88 0.69 84.85 0.47 0.00 48.27 0.74 0.43 71.33 0.76 0.48 73.61 0.83 0.64 81.51 T 2 0

1000-genome 0.85 0.80 92.60 0.86 0.82 92.93 0.22 0.00 65.00 0.80 0.73 88.97 0.82 0.76 90.65 0.84 0.79 91.13 T 3 -

seismic 0.17 0.15 92.26 0.13 0.15 93.11 0.14 0.08 51.03 0.30 0.25 84.98 0.29 0.23 86.80 0.37 0.33 93.42 I 6 -

phoneme 0.81 0.73 88.75 0.82 0.74 89.31 0.39 0.03 51.55 0.74 0.62 82.40 0.74 0.62 81.48 0.76 0.65 83.77 I 2 -

satimage 0.93 0.93 99.83 0.92 0.92 99.81 0.53 0.58 97.99 0.86 0.86 99.62 0.85 0.85 99.67 0.89 0.89 99.69 T 6 -

musk 0.92 0.90 97.50 0.95 0.94 98.50 0.35 0.21 66.98 0.91 0.90 97.07 0.77 0.73 93.01 0.93 0.92 97.79 T 7 -

bank 0.45 0.39 88.69 0.47 0.44 90.14 0.20 0.03 52.20 0.53 0.47 85.77 0.51 0.44 86.01 0.53 0.47 85.23 I 4 -

smtp 0.33 0.34 99.97 0.00 0.00 98.73 0.06 0.00 80.00 0.49 0.50 99.96 0.75 0.77 99.99 0.75 0.77 99.99 T 2 -

The following sections describe the results in detail.
A. RQ1: Impact of graph learning method

This experiment aims to study the impact of 2 different
graph learning methods—transductive and inductive—and the
impact of the minimum number of neighbors N on the
effectiveness of the models, as explained in Section II-A. The
X-axis of Figures 3a and 3b show results from varying the
minimum number of neighbors when building graphs for the
HPC datasets listed in Table I. The Y-axis shows the corre-
sponding F1-score metric using the GraphSAGE method for
learning embeddings with default hyperparameters: 5 layers,
256 hidden features, each internal layer’s aggregator type is
gcn, and the output layer’s aggregator type is pool. Based on
the results shown in Figure 3, we can conclude that while the
HPC datasets perform better using transductive graph learning,
half of the ML datasets benefit more from inductive graph
learning.
B. RQ2: Impact of the minimum number of neighbors

Figure 3 shows the effect of varying the minimum number
of neighbors during graph creation. As expected, increasing
N increases the number of edges created and the memory
footprint of the graph, through graph creation runtime only
increases marginally as increasing N does not add additional
computation. We observe that the best minimum number of
neighbors, N, is at least 2 and is better when higher in the
ML datasets. This may be indicative that inductive learning
allows for better generalization.
C. RQ3: What is the overall performance of different anomaly

classification methods
The objective of this experiment is to study the overall

performance of different anomaly classification methods using
both HPC and ML datasets. In this experiment, we compare
the graph-based methods, GraphSAGE, GAT, and GCN, with
several baselines, XGBoost, LightGBM, and DNN. Details
of different methods and their parameters are described in
Section V-C.

Important attributes of each dataset are described in Table I.
As seen in the smtp dataset, which has the lowest ratio of
anomalous samples with only 30 of 95159 samples, accuracy
is not always a meaningful metric. The F1 score describes
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Fig. 3: Comparison of graph building methods using an
untuned GraphSAGE model.

a model’s ability to correctly classify positive cases, and the
MCC score additionally describes a model’s ability to correctly
classify negative cases. For the GNN methods, both GCN and
GraphSAGE achieve near-perfect classification accuracy by
all chosen metrics for the extremely unbalanced smtp dataset.
For all of the experiments, DNN based approach performs the
worst. This may be due to less important features negatively
affecting the DNN [35].
D. RQ4: Can we explain “why” performance samples are

classified as anomalous?
This experiment aims to explain “why” the performance

samples are classified as anomalous. To provide an expla-
nation of the classification model’s decisions, we present 2
pieces of information: (1) sample relations, and (2) feature
importance to explain what could have caused the anomaly.
To compute feature importance, we leverage the SHAP [18]
library with XGBoost to analyze what could have caused the
performance anomalies. To validate why a GNN model decides
a new performance sample as anomalous, we leverage the
GNNExplainer [17] library to identify “similar” samples.
Explanation: Figure 4a and Figure 4b show the neighbor-
hoods of a correctly predicted normal and anomalous node,
respectively. While the anomalous node is strongly connected
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(a) GNNExplainer shows neighbors of a 
node correctly predicted as normal.

(b) GNNExplainer shows neighbors of a 
node correctly predicted as anomalous.

(c) Feature importance as indicated by 
SHAP.

(d) Effect of feature values in classification 
decision.

Fig. 4: Explainability of classifications made by the Graph-
SAGE classifier, (a) and (b), and the XGBoost classifier, (c)
and (d), with the singlereuse dataset.

to other anomalous nodes, the normal node has weak con-
nections to anomalous nodes. Further investigation shows that
the feature values of the normal and anomalous events are
the same, only the function runtime of the anomalous event
is significantly larger than that of a normal sample. This
observation validates that the model is able to correctly classify
a node as anomalous because it does not conform to an
expected behavior.
Feature importance: From Figure 4c, we observe that
(1) features related to function runtime, outlier severity and
TIME, are the most important, followed by entry, the times-
tamp of the function entry. As described in Section V-B,
performance events that occur toward the beginning of an
application are more likely to be labeled as anomalous due
to a lack of running statistics. Figure 4d indicates that higher
values for function runtime, as well as lower values for entry
timestamp, are correlated with anomalous events. Though pro-
viding a smaller contribution to the classification decision, we
observe that minor page faults are correlated with anomalous
events.
E. Discussions

Table II shows that our graph-based approach outperforms
the baseline approaches in 6 of 11 experiments with respect
to MCC scores. The benefit of parallelization is shown in
Table III, with observed speedups of up to 10.7x. The greater
the number of nodes, edges, and features, the greater benefit
there is in parallelization of graph creation. Though we do not
see a significant speedup for small graphs, we do not observe
a slowdown.

VII. RELATED WORK

A. Anomaly detection in HPC
Despite extensive research on anomaly detection in HPC,

identifying anomalous instances is still an open research ques-

TABLE III: Comparison of time to build graphs for each
dataset, serial times indicated with asterisks are extrapolated
from 20 minutes of partial graph creation.

Dataset Nodes Features Serial (s) Parallel (s) Speedup

singlerepeat 53034 18 *4800 765.18 *6.27x

singlereuse 3349 19 20.7 16.13 1.28x

allrepeat 144771 20 *58200 4776.89 *12.18x

allreuse 23286 20 975.45 94.63 10.31x

1000genome 20687 30 779.31 108.62 7.17x

seismic 2584 15 29.51 7.99 3.69x

phoneme 5404 5 113.59 19.67 5.77x

satimage 5803 36 66.81 6.52 10.25x

musk 6598 166 99.53 9.29 10.71x

bank 45211 10 8149.44 1286.51 6.33x

smtp 95156 3 15620.79 1490.33 10.48x

tion. Borghesi et al. proposed an unsupervised [36], and later
a semi-supervised [37] autoencoder-based anomaly detection
method. The unsupervised autoencoder is trained solely using
normal instances. Thus, it is unable to learn anomalous pat-
terns during training, while the semi-supervised autoencoder
contains a limited number of anomalous instances. The limi-
tation of these approaches is that an unsupervised autoencoder
only learns the underlying patterns of normal instances, not the
characteristics of an anomalous representation. On the other
hand, the semi-supervised approach is prone to overfit the
model if there is not enough anomalous data.

Dey et al. [38] propose a signal-based anomaly detection in
Chimbuko by formulating a novel metric to evaluate anomaly
detection algorithms treating anomalies as noise. Prodigy [39],
proposed by Aksar et al. uses multivariate time series telemetry
data for finding out performance anomalies. However, those
approaches are based on a time-series dataset, which we are
not considering in this study.
B. Graph-Based Classification

TableGraphNet [40] is a DNN based approach that converts
tabular data to graphs for each data sample and suffers from
the poor performance of DNN-based methods. TabGNN [41]
constructs a direct multiplex graph from the given tabular
dataset using a DNN-based approach. These 2 approaches
heavily rely on DNN, and our method outperforms DNN,
implying significant improvement over those methods.

VIII. CONCLUSIONS

This paper demonstrates a graph-based representation learn-
ing for anomaly classification technique in HPC performance
analysis domain. We convert our performance tabular data to a
graph structure and later fed the graph to generate an effective
representation learning for identifying anomalous patterns. We
evaluate both our proposed methodology and state-of-the-art
ML models on 11 datasets. Our model outperforms gradient
decent-based approaches 6 out of 11 experiments in terms
of MCC score. We also leverage parallelization techniques
to build graphs, achieving a maximum 10.7x speed up from
serial graph creation. We also include the interpretability of
our graph-based method to explain the inherent pattern of both
anomalous and normal events.
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